How You Act at Starbucks Might Reflect Your Ancestors' Farming Style

Greg Baker, AFP/Getty Images
Greg Baker, AFP/Getty Images

What you do in Starbucks may be linked to more than just your personal coffee preferences. As Science reports, a new study on coffee-shop behavior in different parts of China indicates that farming practices that date back generations still influence how people behave in public. It found that in regions where agriculture traditionally focused on wheat, people were much more likely to be sitting alone at coffee shops compared to people in areas where rice was the dominant crop.

The study, in Science Advances, sounds kind of crazy at first: What my great-grandfather farmed has nothing to do with how I drink my latte, surely. But the design of the study, which involved observing almost 9000 people at 256 coffee shops in six different Chinese cities, is a surprisingly clever way for scientists to observe cultural differences in the real world, researchers who weren't involved in the study told Science.

The study's authors, from the University of Chicago’s business school, Beijing Normal University, and the University of Virginia, wanted to know if the cultural differences of farming wheat and rice persisted through non-farming generations. Rice paddies require twice as much labor as a crop like wheat, as well as massive irrigation systems that would require cooperation between multiple farmers to build and operate. Thomas Talhelm, the study’s lead author, has previously proposed what he calls the "rice theory of culture." That is, the cooperation between neighbors necessary to grow rice led to an interdependent culture that is more collectivist and community-oriented, compared to cultures that grow wheat (like the U.S.), which have developed to be more focused on the individual.

What does this have to do with coffee? The researchers examined how people behave in public in northern China, a wheat-growing region, compared with southern China, a rice-growing region, as a way to examine how cultural differences that arose from agricultural practices still persist in urban life. Across local coffee shops and big chains like Starbucks, they observed that on weekdays, an average 10 percent more people in northern Chinese coffee shops were drinking their coffee alone compared to southern Chinese coffee shops. That number varied by day of the week and time of day, though the researchers didn’t explore why. (Possibly, people just don’t hang out with their friends much in the middle of a Monday morning.) On weekends, the difference was slightly smaller—5 percent—but still significant.

The difference held even when controlling for the type of coffee shop (international chain or local shop), age demographics of the area, and the percentage of workers in the city who are self-employed (and thus, more likely to do their work in a coffee shop).

To further study how regional differences affect behavior, the researchers decided to rearrange some chairs. They went to Starbucks and pushed chairs together in a way that would inconvenience people trying to walk through the cafe, then waited to see how many people would push the chairs out of their way. They found that in a sample of 700 Starbucks customers that were subjected to what they call “the chair trap,” people in wheat-growing areas were more likely to move the chairs out of their way (an individualistic move) while those in rice-growing areas were more likely to adapt themselves to the situation, squeezing their bodies through the tight space without disturbing the chair setup (a collectivist move).

"The fact that these differences appeared among mostly middle-class city people suggests that rice-wheat differences are still alive and well in modern China," the researchers write. This included in Hong Kong, which is located in a rice-growing region but is both wealthier and, due to its time as a British colony, has more Western influence than mainland Chinese cities. In general, the southern cities studied were denser and more developed than Beijing and Shenyang in the north, according to the researchers, and yet economic growth and urbanization didn't seem to make the culture more individualistic.

The researchers have proposed doing a similar study in India, a country that also features a split in wheat- and rice-growing regions. Since China's north-south split means that rice-growing and wheat-growing cities feature significantly different climates, it may be useful to see whether the difference holds in cities in India that share the same climate but have different crops.

[h/t Science]

Watch a Gulper Eel Inflate Like a Terrifying Balloon

OET, NautilusLive.org
OET, NautilusLive.org

Since launching in 2008, the Ocean Exploration Trust's Nautilus research vessel has live-streamed a purple orb, a transparent squid, and a stubby octopus from the bottom of the ocean. The latest bizarre example of marine life captured by the vessel is a rare gulper eel that acts like a cross between a python and a pufferfish.

As Thrillist reports, this footage was shot by a Nautilus rover roaming the Pacific Ocean's Papahanaumokuakea Marine National Monument 4700 feet below the surface. In it, a limbless, slithery, black creature that looks like it swallowed a beach ball can be seen hovering above the sea floor. After about a minute, the eel deflates its throat, swims around for a bit, and unhinges its jaw to reveal a gaping mouth.

The reaction of the scientists onboard the ship is just as entertaining as the show the animal puts on. At first they're not sure what they're looking at ("It looks like a Muppet" someone says), and after being blown away by its shape-shifting skills, they conclude that it's a gulper eel. Gulper eels are named for their impressive jaw span, which allows them to swallow prey much larger than themselves and puff up to intimidate predators. Because they like to lurk at least 1500 feet beneath the ocean's surface, they're rarely documented.

You can watch the inflated eel and hear the researcher's response to it in the video below.

[h/t Thrillist]

10 Electrifying Facts About Michael Faraday

iStock
iStock

This world-changing genius was born into poverty on September 22, 1791. Fortunately for us, Michael Faraday refused to let his background stand in his way.

1. HE WAS LARGELY SELF-EDUCATED.

In Faraday's boyhood home, money was always tight. His father, James, was a sickly blacksmith who struggled to support a wife and four children in one of London's poorer outskirts. At age 13, young Faraday started helping the family make ends meet. Bookseller George Ribeau (sometimes spelled Riebau) took him on as an errand boy in 1804, with the teen's primary job being the delivery and recovery of loaned-out newspapers.

Shortly after Faraday's 14th birthday, Ribeau offered him a free apprenticeship. Over the next seven years, he mastered the trade of bookbinding. After hours, Faraday remained in Ribeau's store, hungrily reading many of the same volumes he'd bound together.

Like most lower-class boys, Faraday's formal schooling was very limited. Between those bookshelves, however, he taught himself a great deal—especially about chemistry, physics, and a mysterious force called "electricity."

2. A 300-PAGE NOTEBOOK LAUNCHED HIS SCIENTIFIC CAREER.


Wikimedia Commons // CC BY 4.0 

Sir Humphry Davy (above) left a huge mark on science. In the year 1808 alone, the man discovered no less than five elements, including calcium and boron. An excellent public speaker, Davy's lectures at the Royal Institution consistently drew huge crowds. 

Twenty-year-old Faraday attended four of these presentations in 1812, having received tickets from a customer. As Davy spoke, Faraday jotted down detailed notes, which he then compiled and bound into a little book. Faraday sent his 300-page transcript to Davy. Duly impressed, the seasoned scientist eventually hired him as a lab assistant. Later in life, Davy was asked to name the greatest discovery he'd ever made. His answer: "Michael Faraday."

Tension would nevertheless erupt between mentor and protégé. As Faraday's accomplishments began to eclipse his own, Davy accused the younger man of plagiarizing another scientist's work (this rumor was swiftly discredited) and tried to block his admission to the Royal Society.

3. IF IT WEREN'T FOR FARADAY, WE MIGHT NOT HAVE ELECTRIC POWER.

On September 3, 1821, Faraday built a device that ushered technology into the modern era. One year earlier, Danish physicist Hans Christian Ørsted had demonstrated that when an electric current flows through a wire, a magnetic field is created around it. Faraday capitalized on this revelation. Inside the Royal Society basement, he began what was arguably his most groundbreaking experiment by placing a magnet in the bottom of a mercury-filled glass container. Dangling overhead was a wire, which Faraday connected to a battery. Once an electric current was conducted through the wire, it began rotating around the magnet.

Faraday had just built the world's first electric motor. How could he possibly top himself? By building the world's first electric generator. His first experiment was comprised of a simple ring of wires and cotton through which he passed a magnet. By doing so, he found that a current was generated. To this day, most electricity is made using the same principles.

4. FARADAY INVENTED THE RUBBER BALLOON.


iStock

By today's standards, his early models would look shabby. Made via pressing two sheets of rubber together, Faraday's balloons were used to contain hydrogen during his experiments. Faraday created his first in 1824 and was quick to praise the bag's “considerable ascending power.” Toy manufacturers started distributing these the following year.

5. HE'S ALSO THE GRANDFATHER OF MODERN REFRIGERATORS.

In 1823, Faraday sealed a sample of chlorine hydrate inside a V-shaped tube. As he heated one end and cooled the other simultaneously, the scientist noticed that a peculiar yellow liquid was starting to form. Curious, he broke open the tube. Without warning, a sudden, violent explosion sent glass shards flying everywhere. Mercifully uninjured, he smelled a strong scent of chlorine in the air.

It didn't take him very long to figure out what had happened. Inside the tube, pressure was building, which liquefied the gas. Upon puncturing the glass, he'd released this pressure and, afterwards, the liquid reverted into its gaseous state. This sudden evaporation came with an interesting side-effect: it cooled down the surrounding air. Quite unintentionally, Faraday thus set the stage for the very first ice-making machines and refrigeration units.

6. HE BECAME AN ANTI-POLLUTION CRUSADER.

Britain's industrialization came at a malodorous price. As London grew more crowded during the mid-1800s, garbage and fecal matter were dumped into the River Thames with increasing regularity. Naturally, the area didn't smell like a rose. In 1855, Faraday penned an oft-reproduced open letter about the problem, imploring the authorities to take action. “If we neglect this subject,” he wrote, “we cannot expect to do so with impunity; nor ought we be surprised if, ere many years are over, a hot season give us sad proof for the folly of our carelessness.”

Just as Faraday predicted, a broiling summer forced Londoners of all stripes to hold their noses. Dubbed “the Great Stink,” the warmer months of 1858 sent the Thames' rancid odor wafting all over the city. Parliament hastily responded with a comprehensive sewage reform bill. Gradually, the putrid stench began to dissipate.

7. HE STARTED THE ROYAL SOCIETY'S CHRISTMAS LECTURE TRADITION.


Alexander Blaikley, Wikimedia Commons, Public Domain

Faraday understood the importance of making science accessible to the public. In 1825, while employed by the Royal Society, he spearheaded an annual series that's still going strong today. That holiday season, engineer John Millington delivered a set of layman-friendly lectures on “natural philosophy.” Every year thereafter (excluding 1939–1942 because of WWII), a prominent scientist has been invited to follow in his footsteps. Well-known Christmas lecturers include David Attenborough (1973), Carl Sagan (1977), and Richard Dawkins (1991). Faraday himself was the presenter on no less than 19 occasions.

8. BRILLIANT AS FARADAY WAS, HE STRUGGLED WITH MATH.

Towards the end of his life, Faraday's lack of formal education finally caught up with him. An underprivileged childhood had rendered him mathematically illiterate, a severe handicap for a professional scientist. In 1846, he hypothesized that light itself is an electromagnetic phenomenon, but because Faraday couldn't support the notion with mathematics, it wasn't taken seriously. Salvation for him came in the form of a young physicist named James Clerk Maxwell. Familial wealth had enabled Maxwell to pursue math and—in 1864—he released equations [PDF] that helped prove Faraday's hunch.

9. AS TIME WORE ON, HE STRUGGLED WITH MEMORY LOSS.

Michael Faraday
iStock

At the age of 48, Faraday's once-sharp memory started faltering. Stricken by an illness that rendered him unable to work for three years, he wrestled with vertigo, unsteadiness, and other symptoms. Following this "extended vacation" [PDF], he returned to the Royal Society, where he experimented away until his early 70s.

However, Faraday was still prone to inexplicable spurts of sudden giddiness, depression, and extreme forgetfulness. “[My] bad memory,” he wrote, “both loses recent things and sometimes suggests old ones as new.” Nobody knows what caused this affliction, though some blame it on overexposure to mercury.

10. EINSTEIN KEPT A PORTRAIT OF FARADAY IN HIS BERLIN HOME.

Fittingly, the father of modern physics regarded Faraday as a personal hero. Once, upon receiving a book about him, Einstein remarked, “This man loved mysterious Nature as a lover loves his distant beloved.”

SECTIONS

arrow
LIVE SMARTER