iStock
iStock

A Breakthrough Global Study of Depression Finds 44 Genetic Variants Linked to the Disease

iStock
iStock

Though depression affects an estimated 14 percent of the world’s population, scientists know very little about the underlying causes of the disorder, and that makes it incredibly difficult to treat. Even now, researchers are still debating whether common antidepressant medications even work at all, and if they do, why.

New research published in the journal Nature Genetics provides a big step in figuring out why some people suffer from depression while others don’t, identifying 44 genetic variants that are risk factors for major depression, 30 of which are new. They also found two regions of the brain that appear to be associated with the development of the disorder.

The study is the result of an international effort by more than 200 researchers involved with the Psychiatric Genomics Consortium. It looked at more than 135,000 cases of depression (both self-reported and clinically assessed) and almost 345,000 control cases. It’s the largest study on the genetic basis of depression ever done.

The researchers found that all humans carry some of the 44 risk factors identified. Some people carry more than others, putting them at greater risk for developing depression. They also identified the prefrontal and anterior cingulate cortices (both located at the front of the brain) as the regions of the brain probably linked with the development of depression.

Some of the risk factors the researchers identified are also involved in other psychiatric disorders, like schizophrenia, which isn't entirely surprising—a 2007 study from the Psychiatric Genomics Consortium found that people with depression, bipolar disorder, and schizophrenia as well as developmental disorders like ADHD and autism share the same variations in four locations in their genetic code.

By identifying genetic risk factors associated with major depressive disorder, the scientists hope to increase our understanding of why depression strikes some people and not others. "[M]ajor depression is a brain disorder," the researchers conclude. "Although this is not unexpected, some past models of [major depressive disorder] have had little or no place for heredity or biology." They firmly put to rest the idea that depression is entirely a matter of environment.

Environment certainly plays a role—the researchers found links between lower education levels and higher body mass index and depression risk as well—but genetics may impact whether someone whose circumstances put them at risk of depression actually develops the disorder. Depression is still highly stigmatized, which often prevents people from seeking treatment for it, according to several studies. Further understanding of the genetic underpinnings of the disorder may help counter negative perceptions of depression as a character flaw or a sign of laziness.

The study could eventually change how doctors treat depression. Many of the genetic variants identified by this study are linked to targets of current antidepressant medications, like serotonin. But the research may also lead to the development of new medications and therapies that could work for more people (current medications don't work for everyone) and potentially have fewer side effects than existing treatments.

The study partially relied on self-reported depression diagnoses, meaning there's some wiggle room in knowing whether those people are actually clinically depressed to the degree that a medical professional would diagnose. Further research will need to confirm that these genetic variants are indeed linked to depression. There are likely even more gene variants related to depression risk, as well, but they might have too small of an effect to be identified by this study. The researchers hope to continue their work to understand the links between environmental stressors, genetic variations, and depression risk in the future.

nextArticle.image_alt|e
MARS Bioimaging
The World's First Full-Color 3D X-Rays Have Arrived
MARS Bioimaging
MARS Bioimaging

The days of drab black-and-white, 2D X-rays may finally be over. Now, if you want to see what your broken ankle looks like in all its full-color, 3D glory, you can do so thanks to new body-scanning technology. The machine, spotted by BGR, comes courtesy of New Zealand-based manufacturer MARS Bioimaging.

It’s called the MARS large bore spectral scanner, and it uses spectral molecular imaging (SMI) to produce images that are fully colorized and in 3D. While visually appealing, the technology isn’t just about aesthetics—it could help doctors identify issues more accurately and provide better care.

Its pixel detectors, called “Medipix” chips, allow the machine to identify colors and distinguish between materials that look the same on regular CT scans, like calcium, iodine, and gold, Buzzfeed reports. Bone, fat, and water are also differentiated by color, and it can detect details as small as a strand of hair.

“It gives you a lot more information, and that’s very useful for medical imaging. It enables you to do a lot of diagnosis you can’t do otherwise,” Phil Butler, the founder/CEO of MARS Bioimaging and a physicist at the University of Canterbury, says in a video. “When you [have] a black-and-white camera photographing a tree with its leaves, you can’t tell whether the leaves are healthy or not. But if you’ve got a color camera, you can see whether they’re healthy leaves or diseased.”

The images are even more impressive in motion. This rotating image of an ankle shows "lipid-like" materials (like cartilage and skin) in beige, and soft tissue and muscle in red.

The technology took roughly a decade to develop. However, MARS is still working on scaling up production, so it may be some time before the machine is available commercially.

[h/t BGR]

nextArticle.image_alt|e
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017
Look Closely—Every Point of Light in This Image Is a Galaxy
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017

Even if you stare closely at this seemingly grainy image, you might not be able to tell there’s anything to it besides visual noise. But it's not static—it's a sliver of the distant universe, and every little pinprick of light is a galaxy.

As Gizmodo reports, the image was produced by the European Space Agency’s Herschel Space Observatory, a space-based infrared telescope that was launched into orbit in 2009 and was decommissioned in 2013. Created by Herschel’s Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer (PACS), it looks out from our galaxy toward the North Galactic Pole, a point that lies perpendicular to the Milky Way's spiral near the constellation Coma Berenices.

A close-up of a view of distant galaxies taken by the Herschel Space Observatory
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017

Each point of light comes from the heat of dust grains between different stars in a galaxy. These areas of dust gave off this radiation billions of years before reaching Herschel. Around 1000 of those pins of light belong to galaxies in the Coma Cluster (named for Coma Berenices), one of the densest clusters of galaxies in the known universe.

The longer you look at it, the smaller you’ll feel.

[h/t Gizmodo]

SECTIONS

arrow
LIVE SMARTER