Look Up! The Lyrid Meteor Shower Arrives Saturday Night

Scott Butner, Flickr // CC BY-NC-ND 2.0
Scott Butner, Flickr // CC BY-NC-ND 2.0

There is a thin line between Saturday night and Sunday morning, but this weekend, look up and you might see several of them. Between 11:59 p.m. on April 21 and dawn on Sunday, April 22, the Lyrid meteor shower will peak over the Northern Hemisphere. Make some time for the celestial show and you'll see a shooting star streaking across the night sky every few minutes. Here is everything you need to know.

WHAT IS THE LYRID METEOR SHOWER?

Every 415.5 years, the comet Thatcher circles the Sun in a highly eccentric orbit shaped almost like a cat's eye. At its farthest from the Sun, it's billions of miles from Pluto; at its nearest, it swings between the Earth and Mars. (The last time it was near the Earth was in 1861, and it won't be that close again until 2280.) That's quite a journey, and more pressingly, quite a variation in temperature. The closer it gets to the Sun, the more debris it sheds. That debris is what you're seeing when you see a meteor shower: dust-sized particles slamming into the Earth's atmosphere at tens of thousands of miles per hour. In a competition between the two, the Earth is going to win, and "shooting stars" are the result of energy released as the particles are vaporized.

The comet was spotted on April 4, 1861 by A.E. Thatcher, an amateur skywatcher in New York City, earning him kudos from the noted astronomer Sir John Herschel. Clues to the comet's discovery are in its astronomical designation, C/1861 G1. The "C" means it's a long-period comet with an orbit of more than 200 years; "G" stands for the first half of April, and the "1" indicates it was the first comet discovered in that timeframe.

Sightings of the Lyrid meteor shower—named after Lyra, the constellation it appears to originate from—are much older; the first record dates to 7th-century BCE China.

HOW CAN I SEE IT?

Saturday night marks a first quarter Moon (visually half the Moon), which by midnight will have set below the horizon, so it won't wash out the night sky. That's great news—you can expect to see 20 meteors per hour. You're going to need to get away from local light pollution and find truly dark skies, and to completely avoid smartphones, flashlights, car headlights, or dome lights. The goal is to let your eyes adjust totally to the darkness: Find your viewing area, lay out your blanket, lay down, look up, and wait. In an hour, you'll be able to see the night sky with great—and if you've never done this before, surprising—clarity. Don't touch the smartphone or you'll undo all your hard ocular work.

Where is the nearest dark sky to where you live? You can find out on the Dark Site Finder map. And because the shower peaks on a Saturday night, your local astronomy club is very likely going to have an event to celebrate the Lyrids. Looking for a local club? Sky & Telescope has you covered.

WHAT ELSE IS GOING ON UP THERE?

You don't need a telescope to see a meteor shower, but if you bring one, aim it south to find Jupiter. It's the bright, unblinking spot in the sky. With a telescope, you should be able to make out its stripes. Those five stars surrounding it are the constellation Libra. You'll notice also four tiny points of light nearby. Those are the Galilean moons: Io, Europa, Ganymede, and Callisto. When Galileo discovered those moons in 1610, he was able to prove the Copernican model of heliocentricity: that the Earth goes around the Sun.

THERE'S BAD WEATHER HERE! WHAT DO I DO?

First: Don't panic. The shower peaks on the early morning of the 22nd. But it doesn't end that day. You can try again on the 23rd and 24th, though the numbers of meteors will likely diminish. The Lyrids will be back next year, and the year after, and so on. But if you are eager for another show, on May 6, the Eta Aquariids will be at their strongest. The night sky always delivers.

Newly Uncovered Galileo Letter Details How He Tried to Avoid the Inquisition

Galileo Before The Papal Tribunal by Robert Henry. Hulton Archive, Getty Images
Galileo Before The Papal Tribunal by Robert Henry. Hulton Archive, Getty Images

Galileo Galilei was one of the Roman Catholic Inquisition’s most famous targets. As a result of his outspoken support for the theory that all the planets, Earth included, revolve around the Sun, the Catholic Church charged him with heresy and he spent the last years of his life under house arrest. Galileo was well aware that he was on the Church’s hit list, and a newly discovered letter shows that at one point, he tried to tone down his ideas to avoid persecution, according to Nature and Ars Technica.

The letter in question, written in 1613, solves a long-held mystery for Galileo scholars. It was found in the library of the Royal Society, where it has been for at least 250 years.

Galileo’s beef with the Catholic Church came about because of his support for heliocentrism—the idea that the solar system centers around the Sun—as advocated in Nicolaus Copernicus’s book De Revolutionibus. Galileo’s scientific writings clearly endorsed Copernicus’s theory of the world, including in personal correspondence that was widely disseminated, and in some cases, he directly questioned the scientific merit of Biblical passages.

In 1613, Galileo wrote to a friend and former student named Benedetto Castelli who was then teaching mathematics at the University of Pisa. The letter was a long treatise on Galileo’s thoughts on Copernicus’s ideas and religion, arguing that science and astronomy should not be overpowered by religious doctrin . (He would later expand this into his Letter to the Grand Duchess Christina.) As with many of Galileo’s writings at the time, the letter was copied and disseminated widely, and eventually, a friar named Niccolò Lorini forwarded it to the Inquisition in Rome in 1615.

This is where things get tricky. Galileo claimed that the version of the letter Lorini sent was doctored to be more inflammatory. He sent a less controversial version of the letter to a friend, saying that it was the original document and should be forwarded to the Vatican, essentially to clear his name. But scholars have never been able to be totally sure if he was telling the truth about the letter being doctored.

This newly discovered letter suggests that he was lying, and that he himself was looking to tone down his rhetoric to appease the Catholic Church and keep authorities from quashing the spread of heliocentric ideas. The original copy found in the Royal Society archives shows changes to the wording in what appears to be Galileo’s handwriting. The seven-page letter, signed “G.G.,” includes changes like swapping the word “false” for the more slippery “look different from the truth,” changing “concealing” to “veiling,” and other edits that seek to tone down the rhetoric that inflamed Church leaders. The wording and handwriting corresponds to similar writing by Galileo at the time. Based on this finding, it seems that Galileo did seek to make his ideas more palatable to the Catholic Church in the hopes of escaping persecution by the Inquisition.

Discovered on a research trip by science historian Salvatore Ricciardo of Italy's University of Bergamo, the letter may have been overlooked in the Royal Society archives because it was cataloged as being dated October 21, 1613 rather than the date it actually bears, December 21, 1613. However, it’s unclear how it came to the Royal Society in the first place. The document is the subject of a forthcoming article by Ricciardo and his colleagues in the Royal Society journal Notes and Records, according to Nature.

The minor changes Galileo made did not successfully hold off the Church’s crackdown on heliocentrism. In 1616, the Inquisition ordered Galileo to stop teaching or defending the theory, and several of his books were subsequently banned. He would stand trial again almost two decades later, in 1633, on suspicion of holding heretical thoughts. He was found guilty and sentenced to house arrest, where he remained until his death in 1642.

[h/t Ars Technica]

This Amateur Rocketeer Builds Functioning, Miniature Replicas of SpaceX Rockets

Jeff J Mitchell, Getty Images
Jeff J Mitchell, Getty Images

Amateur rocketry is a hobby that predates NASA. Hobbyists have successfully made it to space using rockets built without the massive budgets and resources available to larger organizations. And some of these rockets do more than reach incredible heights: As Motherboard reports, Joe Barnard, a 25-year-old rocketeer from Nashville, Tennessee, is working on making model rockets capable of propulsive landings, the same trick that makes some SpaceX rockets reusable.

Most rocket boosters that propel loads past the Earth's atmosphere are designed to go only one way. In 2015, Elon Musk's space exploration company SpaceX made history when it successfully maneuvered the boosters used to launch its Falcon 9 rocket back onto the landing pad. SpaceX says its latest version of the rocket can be re-flown up to 100 times, saving the company millions of dollars per launch.

Joe Barnard is bringing this same level of innovation to the amateur rocketry world. He first became interested in aerospace engineering after watching early SpaceX videos, and instead of earning a degree in the field, he taught himself the basics. He's since made rocketry into a career, founding Barnard Propulsion Systems (BPS), a small business that sells supplies to other hobbyists, and working on rockets of his own.

Like the rockets at SpaceX, Barnard's creations use thrust vectoring—the technology that makes it possible to navigate and stabilize a rocket after launch—only on a much smaller scale. He's built miniature models of SpaceX's Falcon 9 rockets, and as is the case at SpaceX, his launches don't always run smoothly.

Barnard is still perfecting propulsive landings in amateur rockets, but for now he says each failure is a learning experience. You can watch the progress of his experiments on his YouTube channel.

[h/t Motherboard]

SECTIONS

arrow
LIVE SMARTER