Tony Karumba, AFP/Getty Images
Tony Karumba, AFP/Getty Images

The World's Last Male Northern White Rhino Has Died, But Could He Still Help Save the Species?

Tony Karumba, AFP/Getty Images
Tony Karumba, AFP/Getty Images

Following age-related complications, Sudan the northern white rhinoceros was euthanized by a team of vets in Kenya at 45 years old, CNN reports. He was one of only three northern white rhinos left on earth and the last male of his subspecies. For years, Sudan had represented the final hope for the survival of his kind, but now scientists have a back-up plan: Using Sudan's sperm, they may be able to continue his genetic line even after his death.

Northern white rhino numbers dwindled from 2000 in 1960 to only three in recent years. Those last survivors, Sudan, his daughter Najin, and granddaughter Fatu, lived together at the Ol Pejeta Conservancy in Kenya. Each animal had physical issues making it difficult for them to breed, and now with Sudan gone, a new generation of northern white rhinos looks even less likely.

But there is one way the story of these animals doesn't end in extinction. Before Sudan died, researchers were able to save some of his genetic material, which means it's still possible for him to father offspring. Scientists may either use the sperm to artificially inseminate one of the surviving females (even though they're related) or, due to their age and ailments, fertilize one of their eggs and implant the embryo into a female of a similar subspecies, like the southern white rhino, using in vitro fertilization.

"We must take advantage of the unique situation in which cellular technologies are utilized for conservation of critically endangered species," Jan Stejskal, an official at the Dvur Kralove Zoo in the Czech Republic where Sudan lived until 2009, told AFP. "It may sound unbelievable, but thanks to the newly developed techniques even Sudan could still have an offspring."

Poaching has been a major contributor to the northern white rhino's decline over the past century. Rhinos are often hunted for their horns, which are believed to have medicinal properties in some Asian cultures. (Other people just view the horn as a sign of wealth and status.) Procreating is the biggest issue threatening the northern white rhinoceros at the moment. If such poaching continues, other rhino species in the wild could end up in the same situation.

[h/t CNN]

nextArticle.image_alt|e
iStock
arrow
Animals
How Bats Protect Rare Books at This Portuguese Library
iStock
iStock

Visit the Joanina Library at the University of Coimbra in Portugal at night and you might think the building has a bat problem. It's true that common pipistrelle bats live there, occupying the space behind the bookshelves by day and swooping beneath the arched ceilings and in and out of windows once the sun goes down, but they're not a problem. As Smithsonian reports, the bats play a vital role in preserving the institution's manuscripts, so librarians are in no hurry to get rid of them.

The bats that live in the library don't damage the books and, because they're nocturnal, they usually don't bother the human guests. The much bigger danger to the collection is the insect population. Many bug species are known to gnaw on paper, which could be disastrous for the library's rare items that date from before the 19th century. The bats act as a natural form of pest control: At night, they feast on the insects that would otherwise feast on library books.

The Joanina Library is famous for being one of the most architecturally stunning libraries on earth. It was constructed before 1725, but when exactly the bats arrived is unknown. Librarians can say for sure they've been flapping around the halls since at least the 1800s.

Though bats have no reason to go after the materials, there is one threat they pose to the interior: falling feces. Librarians protect against this by covering their 18th-century tables with fabric made from animal skin at night and cleaning the floors of guano every morning.

[h/t Smithsonian]

nextArticle.image_alt|e
iStock
arrow
Animals
Honey Bees Can Understand the Concept of Zero
iStock
iStock

The concept of zero—less than one, nothing, nada—is deceptively complex. The first placeholder zero dates back to around 300 BCE, and the notion didn’t make its way to Western Europe until the 12th century. It takes children until preschool to wrap their brains around the concept. But scientists in Australia recently discovered a new animal capable of understanding zero: the honey bee. According to Vox, a new study finds that the insects can be taught the concept of nothing.

A few other animals can understand zero, according to current research. Dolphins, parrots, and monkeys can all understand the difference between something and nothing, but honey bees are the first insects proven to be able to do it.

The new study, published in the journal Science, finds that honey bees can rank quantities based on “greater than” and “less than,” and can understand that nothing is less than one.

Left: A photo of a bee choosing between images with black dots on them. Right: an illustration of a bee choosing the image with fewer dots
© Scarlett Howard & Aurore Avarguès-Weber

The researchers trained bees to identify images in the lab that showed the fewest number of elements (in this case, dots). If they chose the image with the fewest circles from a set, they received sweetened water, whereas if they chose another image, they received bitter quinine.

Once the insects got that concept down, the researchers introduced another challenge: The bees had to choose between a blank image and one with dots on it. More than 60 percent of the time, the insects were successfully able to extrapolate that if they needed to choose the fewest dots between an image with a few dots and an image with no dots at all, no dots was the correct answer. They could grasp the concept that nothing can still be a numerical quantity.

It’s not entirely surprising that bees are capable of such feats of intelligence. We already know that they can count, teach each other skills, communicate via the “waggle dance,” and think abstractly. This is just more evidence that bees are strikingly intelligent creatures, despite the fact that their insect brains look nothing like our own.

Considering how far apart bees and primates are on the evolutionary tree, and how different their brains are from ours—they have fewer than 1 million neurons, while we have about 86 billion—this finding raises a lot of new questions about the neural basis of understanding numbers, and will no doubt lead to further research on how the brain processes concepts like zero.

[h/t Vox]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios