8 Unexpected Activities People Have Done in MRI Scanners for Science

iStock
iStock

In medicine, magnetic resonance imaging (MRI) uses powerful magnetic fields and radio waves to show what's happening inside the body, producing dynamic images of our internal organs. Using similar technology that tracks blood flow, functional magnetic resonance imaging (fMRI) scans can show neuroscientists neural activity, indicating what parts of the brain light up when, for instance, a person thinks of an upsetting memory or starts craving cocaine. Both require staying within a massive MRI machine for the length of the scan.

There's some controversy over how scientists interpret fMRI data in particular—fMRI studies are based on the idea that an increase of blood flow to a region of the brain means more cellular activity there, but that might not be a completely accurate measure, and a 2016 report found that fMRI studies may have stunning rates of false positives.

But we're not here to talk about results. We're here to talk about all the weird, weird things scientists have asked people to do in MRI machines so that they could look at their brains and bodies. From getting naked to going to the bathroom, people have been willing to do some unexpected activities in the name of science. Here are just a few of the oddest things that people have done in scanners at the behest of curious researchers.

1. SING OPERA

Researchers once invited world-famous opera singer Michael Volle to sing inside an MRI at the University of Freiburg in Germany. The baritone sang a piece from Richard Wagner's opera Tannhäuser as part of a 2016 study on how the vocal tract moves during singing at different pitches and while changing volume. The study asked 11 other professional singers with different voice types to participate as well. They found that the larynx rose with a singer's pitch, but got lower as the song got louder, and that certain factors, like how open their lips were, correlated more with how loud the singer was than how high they were singing. The scientists concluded that future research on the larynx and the physical aspects of singing should take loudness into consideration.

That study wasn't the first to take MRI images of singers. In 2015, researchers at the University of Illinois demonstrated their technique for recording dynamic MRI imaging of speech using video of U of I speech specialist Aaron Johnson singing "If I Only Had a Brain" from The Wizard of Oz.

2. REACT TO ROBOT-DINOSAUR ABUSE

Stills of a video in which a robot gets petted or beaten by a human
Stills from the videos participants watched of robot dinosaurs being treated kindly or unkindly.
Rosenthal-von der Pütten et al., Computers in Human Behavior (2014)

To test whether or not humans can feel empathy with robots for a 2013 study, researchers put participants into an fMRI machine and made them watch videos of humans and robotic dinosaurs. The videos either included footage of the human or robot being stroked or tickled, or the subject being beaten and choked. The brain scans showed similar activity for people viewing both videos, suggesting that people might be able to feel similar empathy for robots as for people.

3. PLAY VIDEO GAMES WITH A MEAN-SPIRITED A.I.

Two brain scans
Eisenberger et al., Science (2003)

To see whether the brain responds to emotional pain in similar ways to physical pain, researchers asked participants in a 2003 study to experience social rejection within an fMRI machine. During the scans, participants played a virtual ball-tossing game against two other players—whom they believed to be other study participants in other scanners—by watching a screen through goggles and pressing one of two keys to toss the ball to one of the other players. They were actually playing against a computer that was programmed to eventually exclude the human player. At some point during the game, the computer-controlled players stopped throwing the human player the ball, causing them to feel excluded and ignored. The researchers found that the excluded study subjects showed brain activation in regions similar to the ones seen in studies of physical pain.

4. POOP

Watching people poop through MRI imaging is a surprisingly common medical technique. It's called magnetic resonance defecography. Doctors use it to diagnose issues with rectal function, analyzing how the muscles of the pelvis are working and the cause of bowel issues. The scan involves having ultrasound jelly and a catheter inserted into your butt, donning a diaper, and crawling inside an MRI scanner. Then, on command, you clench your pelvic muscles in various ways as ordered by the doctor, eventually resulting in pooping out the ultrasound jelly and whatever else you might need to evacuate. No pressure.

5. HAVE SEX …

MRI of a woman before, pre-, and after orgasm
MRI images of a woman at rest, in a pre-orgasmic phase, and 20 minutes after orgasm (L–R)
Schultz et al. in BMJ, 1999

Scientists have also recorded MRI body scans of couples having sex. In the late '90s, Dutch researcher Pek Van Andel and his colleagues at the University Hospital Groningen asked eight couples to come into their lab on a Saturday and have sex in the tube of an MRI scanner in order to analyze how genitals fit together during heterosexual intercourse. Despite the surroundings, they apparently had a fine time. "The subjective level of sexual arousal of the participants, men and women, during the experiment was described afterwards as average," the study noted.

Meanwhile, other researchers are trying to capture scientific images of sex in different, sometimes even more awkward ways. For her 2008 book Bonk: The Curious Coupling Of Sex And Science, science writer Mary Roach and her husband had sex in a lab at University College London while a researcher stood next to them and held an ultrasound wand to her abdomen.

6. … AND HAVE ORGASMS

Scan of a woman's brain during orgasm
Wise et al., The Journal of Sexual Medicine (2017)

Scientists still don't know all that much about how orgasms work, so various studies have asked participants to come into the lab, lay down in an fMRI scanner, and stimulate themselves to orgasm. (A reporter at Inside Jersey went to Rutgers to take part in the university's orgasm research herself in 2010. She brought her own sex toy, but the lab was kind enough to provide the lube.)

Over the course of their work, Rutgers researchers have found that when people bring themselves to orgasm within an fMRI machine, it activates more than 30 brain systems, including ones that you wouldn't think would be involved in getting off, like the prefrontal cortex, which is associated with problem solving and judgment.

7. COMPOSE MUSIC

A musical score with just a few notes on it
Lu et al., Scientific Reports (2015)

Singers aren't the only music professionals to get inside an fMRI machine for science. For a study published in 2015, 17 young composers were asked to create a piece of music while Chinese researchers examined their brain activity. While all of them played the piano, they were asked to compose a piece for an instrument none of them know how to play—the zheng, a traditional Chinese string instrument. They were given a musical staff with just a few introductory notes already written as inspiration and asked to come up with something from there. As soon as they exited the scanner, they wrote down the notes they had imagined during the imaging process. The researchers found that the composers' visual and motor cortex showed less activity than usual, the opposite of what researchers have seen in studies of musical improvisation.

8. HAVE AN OUT-OF-BODY EXPERIENCE

Four brain scans with different areas of the brain lit up in red, yellow, and orange
Activated portions of the brain during an out-of-body experience
Smith and Messier, Frontiers in Human Neuroscience (2014)

In a 2014 study, psychologists at the University of Ottawa recruited an undergraduate student who reported that she could have out-of-body experiences at will to do so within the confines of an fMRI scanner.

"She was able to see herself rotating in the air above her body, lying flat, and rolling along with the horizontal plane," the researchers wrote. "She reported sometimes watching herself move from above but remained aware of her unmoving 'real' body."

She entered the scanner six times, reporting out-of-body experiences that included feeling as if she were above her body and spinning or rocking side-to-side. The researchers found that the experience activated regions of her brain associated with kinesthetic imagery, the feeling of visualizing movement (as athletes often do during training and competitions, for instance), and a deactivated the visual cortex.

How Did 6 Feet Become the Standard Grave Depth?

iStock
iStock

It all started with the plague: The origins of “six feet under” come from a 1665 outbreak in England. As the disease swept the country, the mayor of London literally laid down the law about how to deal with the bodies to avoid further infections. Among his specifications—made in “Orders Conceived and Published by the Lord Mayor and Aldermen of the City of London, Concerning the Infection of the Plague”—was that “all the graves shall be at least six feet deep.”

The law eventually fell out of favor both in England and its colonies. Modern American burial laws vary from state to state, though many states simply require a minimum of 18 inches of soil on top of the casket or burial vault (or two feet of soil if the body is not enclosed in anything). Given an 18-inch dirt buffer and the height of the average casket (which appears to be approximately 30 inches), a grave as shallow as four feet would be fine.

A typical modern burial involves a body pumped full of chemical preservatives sealed inside a sturdy metal casket, which is itself sealed inside a steel or cement burial vault. It’s less of a hospitable environment for microbes than the grave used to be. For untypical burials, though—where the body isn’t embalmed, a vault isn’t used, or the casket is wood instead of metal or is foregone entirely—even these less strict burial standards provide a measure of safety and comfort. Without any protection, and subjected to a few years of soil erosion, the bones of the dearly departed could inconveniently and unexpectedly surface or get too close to the living, scaring people and acting as disease vectors. The minimum depth helps keep the dead down where they belong.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

This article originally appeared in 2012.

One Good Reason Not to Hold in a Fart: It Could Leak Out of Your Mouth

iStock/grinvalds
iStock/grinvalds

The next time you hold in a fart for fear of being heard by polite company, just remember this: It could leak out of your mouth instead of your butt. Writing on The Conversation, University of Newcastle nutrition and dietetics professor Clare Collins explains that pent-up gas can pass through your gut wall and get reabsorbed into your circulation. It's then released when you exhale, whether you like it or not.

“Holding on too long means the build up of intestinal gas will eventually escape via an uncontrollable fart,” Collins writes. In this case, the fart comes out of the wrong end. Talk about potty mouth.

A few brave scientists have investigated the phenomenon of flatulence. In one study, 10 healthy volunteers were fed half a can of baked beans in addition to their regular diets and given a rectal catheter to measure their farts over a 24-hour period. Although it was a small sample, the results were still telling. Men and women let loose the same amount of gas, and the average number of “flatus episodes” (a single fart, or series of farts) during that period was eight. Another study of 10 people found that high-fiber diets led to fewer but bigger farts, and a third study found that gases containing sulphur are the culprit of the world’s stinkiest farts. Two judges were tapped to rate the odor intensity of each toot, and we can only hope that they made it out alive.

Scientific literature also seems to support Collins’s advice to “let it go.” A 2010 paper on “Methane and the gastrointestinal tract” says methane, hydrogen sulfide, and other gases that are produced in the intestinal tract are mostly eliminated from the body via the anus or “expelled from the lungs.” Holding it in can lead to belching, flatulence, bloating, and pain. And in some severe cases, pouches can form along the wall of the colon and get infected, causing diverticulitis.

So go ahead and let it rip, just like nature intended—but maybe try to find an empty room first.

[h/t CBS Philadelphia]

SECTIONS

arrow
LIVE SMARTER