CLOSE
iStock
iStock

8 Unexpected Activities People Have Done in MRI Scanners for Science

iStock
iStock

In medicine, magnetic resonance imaging (MRI) uses powerful magnetic fields and radio waves to show what's happening inside the body, producing dynamic images of our internal organs. Using similar technology that tracks blood flow, functional magnetic resonance imaging (fMRI) scans can show neuroscientists neural activity, indicating what parts of the brain light up when, for instance, a person thinks of an upsetting memory or starts craving cocaine. Both require staying within a massive MRI machine for the length of the scan.

There's some controversy over how scientists interpret fMRI data in particular—fMRI studies are based on the idea that an increase of blood flow to a region of the brain means more cellular activity there, but that might not be a completely accurate measure, and a 2016 report found that fMRI studies may have stunning rates of false positives.

But we're not here to talk about results. We're here to talk about all the weird, weird things scientists have asked people to do in MRI machines so that they could look at their brains and bodies. From getting naked to going to the bathroom, people have been willing to do some unexpected activities in the name of science. Here are just a few of the oddest things that people have done in scanners at the behest of curious researchers.

1. SING OPERA

Researchers once invited world-famous opera singer Michael Volle to sing inside an MRI at the University of Freiburg in Germany. The baritone sang a piece from Richard Wagner's opera Tannhäuser as part of a 2016 study on how the vocal tract moves during singing at different pitches and while changing volume. The study asked 11 other professional singers with different voice types to participate as well. They found that the larynx rose with a singer's pitch, but got lower as the song got louder, and that certain factors, like how open their lips were, correlated more with how loud the singer was than how high they were singing. The scientists concluded that future research on the larynx and the physical aspects of singing should take loudness into consideration.

That study wasn't the first to take MRI images of singers. In 2015, researchers at the University of Illinois demonstrated their technique for recording dynamic MRI imaging of speech using video of U of I speech specialist Aaron Johnson singing "If I Only Had a Brain" from The Wizard of Oz.

2. REACT TO ROBOT-DINOSAUR ABUSE

Stills of a video in which a robot gets petted or beaten by a human
Stills from the videos participants watched of robot dinosaurs being treated kindly or unkindly.
Rosenthal-von der Pütten et al., Computers in Human Behavior (2014)

To test whether or not humans can feel empathy with robots for a 2013 study, researchers put participants into an fMRI machine and made them watch videos of humans and robotic dinosaurs. The videos either included footage of the human or robot being stroked or tickled, or the subject being beaten and choked. The brain scans showed similar activity for people viewing both videos, suggesting that people might be able to feel similar empathy for robots as for people.

3. PLAY VIDEO GAMES WITH A MEAN-SPIRITED A.I.

Two brain scans
Eisenberger et al., Science (2003)

To see whether the brain responds to emotional pain in similar ways to physical pain, researchers asked participants in a 2003 study to experience social rejection within an fMRI machine. During the scans, participants played a virtual ball-tossing game against two other players—whom they believed to be other study participants in other scanners—by watching a screen through goggles and pressing one of two keys to toss the ball to one of the other players. They were actually playing against a computer that was programmed to eventually exclude the human player. At some point during the game, the computer-controlled players stopped throwing the human player the ball, causing them to feel excluded and ignored. The researchers found that the excluded study subjects showed brain activation in regions similar to the ones seen in studies of physical pain.

4. POOP

Watching people poop through MRI imaging is a surprisingly common medical technique. It's called magnetic resonance defecography. Doctors use it to diagnose issues with rectal function, analyzing how the muscles of the pelvis are working and the cause of bowel issues. The scan involves having ultrasound jelly and a catheter inserted into your butt, donning a diaper, and crawling inside an MRI scanner. Then, on command, you clench your pelvic muscles in various ways as ordered by the doctor, eventually resulting in pooping out the ultrasound jelly and whatever else you might need to evacuate. No pressure.

5. HAVE SEX …

MRI of a woman before, pre-, and after orgasm
MRI images of a woman at rest, in a pre-orgasmic phase, and 20 minutes after orgasm (L–R)
Schultz et al. in BMJ, 1999

Scientists have also recorded MRI body scans of couples having sex. In the late '90s, Dutch researcher Pek Van Andel and his colleagues at the University Hospital Groningen asked eight couples to come into their lab on a Saturday and have sex in the tube of an MRI scanner in order to analyze how genitals fit together during heterosexual intercourse. Despite the surroundings, they apparently had a fine time. "The subjective level of sexual arousal of the participants, men and women, during the experiment was described afterwards as average," the study noted.

Meanwhile, other researchers are trying to capture scientific images of sex in different, sometimes even more awkward ways. For her 2008 book Bonk: The Curious Coupling Of Sex And Science, science writer Mary Roach and her husband had sex in a lab at University College London while a researcher stood next to them and held an ultrasound wand to her abdomen.

6. … AND HAVE ORGASMS

Scan of a woman's brain during orgasm
Wise et al., The Journal of Sexual Medicine (2017)

Scientists still don't know all that much about how orgasms work, so various studies have asked participants to come into the lab, lay down in an fMRI scanner, and stimulate themselves to orgasm. (A reporter at Inside Jersey went to Rutgers to take part in the university's orgasm research herself in 2010. She brought her own sex toy, but the lab was kind enough to provide the lube.)

Over the course of their work, Rutgers researchers have found that when people bring themselves to orgasm within an fMRI machine, it activates more than 30 brain systems, including ones that you wouldn't think would be involved in getting off, like the prefrontal cortex, which is associated with problem solving and judgment.

7. COMPOSE MUSIC

A musical score with just a few notes on it
Lu et al., Scientific Reports (2015)

Singers aren't the only music professionals to get inside an fMRI machine for science. For a study published in 2015, 17 young composers were asked to create a piece of music while Chinese researchers examined their brain activity. While all of them played the piano, they were asked to compose a piece for an instrument none of them know how to play—the zheng, a traditional Chinese string instrument. They were given a musical staff with just a few introductory notes already written as inspiration and asked to come up with something from there. As soon as they exited the scanner, they wrote down the notes they had imagined during the imaging process. The researchers found that the composers' visual and motor cortex showed less activity than usual, the opposite of what researchers have seen in studies of musical improvisation.

8. HAVE AN OUT-OF-BODY EXPERIENCE

Four brain scans with different areas of the brain lit up in red, yellow, and orange
Activated portions of the brain during an out-of-body experience
Smith and Messier, Frontiers in Human Neuroscience (2014)

In a 2014 study, psychologists at the University of Ottawa recruited an undergraduate student who reported that she could have out-of-body experiences at will to do so within the confines of an fMRI scanner.

"She was able to see herself rotating in the air above her body, lying flat, and rolling along with the horizontal plane," the researchers wrote. "She reported sometimes watching herself move from above but remained aware of her unmoving 'real' body."

She entered the scanner six times, reporting out-of-body experiences that included feeling as if she were above her body and spinning or rocking side-to-side. The researchers found that the experience activated regions of her brain associated with kinesthetic imagery, the feeling of visualizing movement (as athletes often do during training and competitions, for instance), and a deactivated the visual cortex.

nextArticle.image_alt|e
iStock
arrow
science
Scientists Accidentally Make Plastic-Eating Bacteria Even More Efficient
iStock
iStock

In 2016, Japanese researchers discovered a type of bacteria that eats non-biodegradable plastic. The organism, named Ideonella sakaiensis, can break down a thumbnail-sized flake of polyethylene terephthalate (PET), the type of plastic used for beverage bottles, in just six weeks. Now, The Guardian reports that an international team of scientists has engineered a mutant version of the plastic-munching bacteria that's 20 percent more efficient.

Researchers from the U.S. Department of Energy's National Renewable Energy Laboratory and the University of Portsmouth in the UK didn't originally set out to produce a super-powered version of the bacteria. Rather, they just wanted a better understanding of how it evolved. PET started appearing in landfills only within the last 80 years, which means that I. sakaiensis must have evolved very recently.

The microbe uses an enzyme called PETase to break down the plastic it consumes. The structure of the enzyme is similar to the one used by some bacteria to digest cutin, a natural protective coating that grows on plants. As the scientists write in their study published in the journal Proceedings of the National Academy of Sciences, they hoped to get a clearer picture of how the new mechanism evolved by tweaking the enzyme in the lab.

What they got instead was a mutant enzyme that degrades plastic even faster than the naturally occurring one. The improvement isn't especially dramatic—the enzyme still takes a few days to start the digestion process—but it shows that I. sakaiensis holds even more potential than previously expected.

"What we've learned is that PETase is not yet fully optimized to degrade PET—and now that we've shown this, it's time to apply the tools of protein engineering and evolution to continue to improve it," study coauthor Gregg Beckham said in a press statement.

The planet's plastic problem is only growing worse. According to a study published in 2017, humans have produced a total of 9 billion tons of plastic in less than a century. Of that number, only 9 percent of it is recycled, 12 percent is incinerated, and 79 percent is sent to landfills. By 2050, scientists predict that we'll have created 13 billion tons of plastic waste.

When left alone, PET takes centuries to break down, but the plastic-eating microbes could be the key to ridding it from the environment in a quick and safe way. The researchers believe that PETase could be turned into super-fast enzymes that thrives in extreme temperatures where plastic softens and become easier to break down. They've already filed a patent for the first mutant version of the enzyme.

[h/t The Guardian]

nextArticle.image_alt|e
Robin Stott, via Flickr // CC BY-SA 2.0
arrow
science
15 Overlooked Facts about Rosalind Franklin
Robin Stott, via Flickr // CC BY-SA 2.0
Robin Stott, via Flickr // CC BY-SA 2.0

Today is the 60th anniversary of the death of English chemist Rosalind Franklin, a brilliant and dedicated scientist best known for the honor denied her: the 1962 Nobel Prize for discovering the structure of DNA. Here are 15 facts about her.

1. SHE KNEW HER CALLING EARLY, BUT HER FATHER RESISTED EDUCATING A DAUGHTER.

Rosalind Elsie Franklin was born in London in 1920. She was one of five children born into a wealthy Jewish family. She decided she wanted to become a scientist at 15, and passed the admissions exam for Cambridge University. However, her father, Ellis, a merchant banker, objected to women going to college and refused to pay her tuition. Her aunt and mother finally managed to change his mind, and she enrolled at Cambridge's all-female Newnham College in 1938.

2. SHE ATTENDED COLLEGE WITH ANOTHER WOMAN WHO DIDN'T GET FULL CREDIT FOR HER WORK.

Bletchley Park cryptanalyst Joan Clarke was a few years older than Franklin, but they were both at Newnham in the late 1930s. Clarke would go on to be recruited for the war effort, cracking the German Enigma codes. The full scope of Clarke's work is still unknown, due to government secrecy.

3. HER SCHOLASTIC ACHIEVEMENTS WERE DENIED BY HER UNIVERSITY FOR YEARS.

Newnham College, Cambridge
Azeira, Wikimedia Commons // Public Domain

Despite Newnham College having been at Cambridge since 1871, the university refused to accept women as full members until 1948, seven years after Franklin earned the title of a degree in chemistry. Oxford University started granting women's degrees in 1920.

4. HER RESEARCH ON COAL HELPED THE AEROSPACE INDUSTRY.

After graduation, Franklin got a job at the British Coal Utilization Research Association (BCURA), where she researched coal and charcoal, and how it could be used for more than fuel. Her research formed the basis for her 1945 doctoral dissertation; it and several of her later papers on the micro-structures of carbon fibers played a role in the eventual use of carbon composites in air- and spacecraft construction.

5. HER MALE COLLEAGUES WERE HOSTILE AND UNDERMINED HER RESEARCH.

Franklin had a direct nature and was unwilling to be traditionally feminine. One reason she left Cambridge to work on coal was that her doctoral supervisor did not like her and believed women would always be less than men. When she was hired in 1951 at King's College, London, to work on DNA, she clashed with researcher Maurice Wilkins, who had thought she was his assistant, not his equal. Meanwhile, Franklin was under the impression that she'd be completely independent. Their relationship got worse and worse the longer they worked together. Wilkins went so far as to share Franklin's research without telling her with James Watson and Francis Crick—even though they were technically his competitors, funded by Cambridge University. Watson was particularly nasty about Franklin in his 1968 book, The Double Helix, criticizing her appearance and saying she had to be “put in her place.”

6. HOW EVENTS UNFOLDED IN THE DISCOVERY OF DNA'S STRUCTURE IS STILL DEBATED TODAY.

Double helix of DNA
Altayb, iStock

Many books have been written hashing over events, either criticizing Watson and Crick, saying they stole Franklin's research, or defending the duo, saying her research helped them but that Franklin would not ultimately have reached their conclusions on her own. Though Franklin and Watson never became friendly, Crick and his wife welcomed Franklin into their home while she was being treated for ovarian cancer.

7. HER WORK MAY HAVE LED TO HER UNTIMELY DEATH.

Franklin died of cancer in 1958. She was 37. Though genetics likely played a part in her illness, her work with crystal x-ray diffraction, which involved constant exposure to radiation, did not help. She is not the first woman in science to risk her health for her research. Marie Curie died from aplastic anemia, which has been tied to radiation exposure. Many of Curie's personal belongings, including her cookbooks, are too radioactive to handle even today.

8. HAD SHE LIVED LONGER, SHE MAY HAVE QUALIFIED FOR MORE THAN ONE NOBEL PRIZE.


Maurice Wilkins (on left), Francis Crick (third from left), and James Watson (fifth from left) accept their Nobel Prize in 1962.
Keystone, Getty Images

The first, of course, would have been awarded with Watson, Crick, and Wilkins, had they been made to share credit with her. (Pierre Curie had to ask the Nobel Committee to add his wife to the nomination in 1903.) As for the second, chemist Aaron Klug won the prize in 1982, carrying on work he and Franklin had started on viruses in 1953, after she left King's College. Because of the rules at the time of her death about awarding prizes posthumously (and in 1974 all posthumous awards were eliminated, the sole exception being in 2011), Franklin has none.

9. DESPITE BEING DENIED HER PRIZE, SHE'S BEEN HONORED BY MANY ACADEMICS.

In 2004, the Chicago Medical School renamed itself the Rosalind Franklin University of Medicine and Science. She has also had a number of academic programs, auditoriums, and labs named for her. In 2013, Newnham College principal Dame Carol Black helped install a plaque commemorating Franklin at the Eagle Pub in Cambridge. Crick and Watson, who already had a plaque in the pub, drank there often while working on the DNA project, and allegedly boasted about discovering “the secret of life” to other patrons.

10. SHE IS THE SUBJECT OF SEVERAL BIOGRAPHIES.

The first, 1975's Rosalind Franklin and DNA, was written by her friend Anne Sayre, largely as a reaction to Watson's The Double Helix. In 2002, Brenda Maddox published Rosalind Franklin: The Dark Lady of DNA.

11. AN OBJECT IN SPACE IS NAMED AFTER HER.

In 1997, amateur Australian astronomer John Broughton discovered an asteroid, which he named 9241 Rosfranklin.

12. AT LEAST ONE HISTORY RAP BATTLE IS ABOUT HER.

It was produced by seventh graders in Oakland, California (with some help from teacher Tom McFadden). And it is delightful.

13. SHE HAS BEEN IMMORTALIZED ON THE SMALL SCREEN AND THE BIG STAGE.

In 1987, BBC's Horizon series aired The Race for the Double Helix, starring Juliet Stevenson as Franklin. Jeff Goldblum played Watson. In 2011, playwright Anna Ziegler premiered a one-act about Franklin called Photograph 51. It opened on the West End in 2015, starring Nicole Kidman as Franklin.

14. THE 2015 RUN OF PHOTOGRAPH 51 RE-IGNITED THE OLD CONTROVERSY.

While Kidman got much praise from critics for her turn as Franklin in Photograph 51, Maurice Wilkins' friends and former colleagues have taken exception to a scene where Wilkins takes a photograph—the titular Photo 51, which showed evidence of DNA's structure—from Franklin's desk when she isn't there, saying he would never have done something so dishonorable.

15. THE PLAY MAY COME TO THE BIG SCREEN IN THE NEXT FEW YEARS.

In 2016, the West End production's director, Michael Grandage, told The Hollywood Reporter that he hopes to turn the play into a film, with Kidman reprising the role.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios