What's Really Happening When We See 'Stars' After Rubbing Our Eyes?

Photo illustration by Mental Floss. Images: iStock.
Photo illustration by Mental Floss. Images: iStock.

It's likely happened to you before: You start rubbing your eyes and almost immediately begin seeing colors, specks, and swirls from behind your closed lids. So what's happening when you see these 2001-esque "stars"? Do they only occur upon rubbing? Does everyone experience them?

Before we can get to what causes the lights, we need to understand a bit about how the eyes work. Angie Wen, a cornea surgeon at New York Eye and Ear Infirmary of Mount Sinai, tells Mental Floss that the retina—the innermost layer of the eye—consists of millions of cells, or photoreceptors. These cells, she says, "are responsible for receiving information from the outside world and converting them to electrical impulses that are transmitted to the brain by the optic nerve. Then, the brain interprets them as images representing the world around us."

However, what we see doesn't just stop there. Sometimes "we see light that actually comes from inside our eyes or from electric stimulation of the brain rather than from the outside world," Wen says. "These bursts of seemingly random intense and colorful lights are called phosphenes, and appear due to electrical discharges from the cells inside our eyes that are a normal part of cellular function."

People have been writing and theorizing about phosphenes for thousands of years. Greek philosophers thought the bursts of light were the result of fire inside our heads: "The eye obviously has fire within it, for when the eye is struck fire flashes out," wrote Alcmaeon of Croton (6th–5th century BCE), a philosopher and early neuroscientist, of the swirls and specks someone sees after getting a blow to the head. A century later, Plato—who believed that a "visual current" [PDF] streamed out of the eye—wrote that "Such fire as has the property, not of burning, but of yielding a gentle light they [the Gods] contrived should become the proper body of each day."

Plato's take was still the dominant one through the Middle Ages. Eventually, Newton (1642–1727) theorized a concept that's more in line with what's believed today about these strange sparkly visions: The phenomenon is due to light that's produced and observed when pressure and motion is placed on the eyes.

Eleonora Lad, an associate professor of ophthalmology at Duke University Medical Center who has a background in neuroscience, explains exactly why eye rubbing generates these visions: "Most vision researchers believe that phosphenes result from the normal activity of the visual system after stimulation of one of its parts from some stimulus other than light," including putting external pressure on the eyes. (Interestingly, due to retinal damage, blind people can't see phosphenes caused by pressure, but they can see them when their visual cortex is electrically stimulated. In hopes of turning this phenomenon into improved vision for the blind, scientists have developed a cortical visual prosthesis, implanted in the visual cortex, that generates patterns of phosphenes. The device has been approved by the FDA for clinical trial.)

As Alcmaeon rightly pointed out, there are causes for the bursts of light beyond just rubbing your eyes: Getting hit in the eye can produce this phenomenon—as can a sneeze, a surprisingly powerful event that tends to clamp our eyes shut, Wen says.

Receiving an MRI or EEG may also trigger it. MRIs, for example, produce a changing magnetic field which can stimulate the visual cortex, making a person see these flashing lights. When it comes to an EEG, depending on the brain stimulation frequency band (Hz) used, some patients experience the phenomenon when closing their eyes, which is believed to come from retinal stimulation during the process.

And the activity doesn't only happen on Earth; astronauts in space have also been known to experience them. As reported in 2006 in the journal Vision Research, "over 80 percent of astronauts serving in today's NASA or ESA (European Space Agency) programs have perceived phosphenes at least in some missions and often over several orbits." They're mainly attributed to interactions between the eye and cosmic ray particles in space, outside the Earth's protective magnetic field.

No matter the cause, the bursts of light are perfectly normal—but that doesn't mean you should engage in excessive eye rubbing. Wen says ophthalmologists advise against rubbing your eyes or applying vigorous pressure; according to Lad, too much rubbing may be damaging to the cornea and lens or "result in a loss of fatty tissue around the eyes, causing the eyes to look deep-set."

A Dracula Ant's Jaws Snap at 200 Mph—Making It the Fastest Animal Appendage on the Planet

Ant Lab, YouTube
Ant Lab, YouTube

As if Florida’s “skull-collecting” ants weren’t terrifying enough, we’re now going to be having nightmares about Dracula ants. A new study in the journal Royal Society Open Science reveals that a species of Dracula ant (Mystrium camillae), which is found in Australia and Southeast Asia, can snap its jaws shut at speeds of 90 meters per second—or the rough equivalent of 200 mph. This makes their jaws the fastest part of any animal on the planet, researchers said in a statement.

These findings come from a team of three researchers that includes Adrian Smith, who has also studied the gruesome ways that the skull-collecting ants (Formica archboldi) dismember trap-jaw ants, which were previously considered to be the fastest ants on record. But with jaw speeds of just over 100 miles per hour, they’re no match for this Dracula ant. (Fun fact: The Dracula ant subfamily is named after their habit of drinking the blood of their young through a process called "nondestructive cannibalism." Yikes.)

Senior author Andrew Suarez, of the University of Illinois, said the anatomy of this Dracula ant’s jaw is unusual. Instead of closing their jaws from an open position, which is what trap-jaw ants do, they use a spring-loading technique. The ants “press the tips of their mandibles together to build potential energy that is released when one mandible slides across the other, similar to a human finger snap,” researchers write.

They use this maneuver to smack other arthropods or push them away. Once they’re stunned, they can be dragged back to the Dracula ant’s nest, where the unlucky victims will be fed to Dracula ant larvae, Suarez said.

Researchers used X-ray imaging to observe the ants’ anatomy in three dimensions. High-speed cameras were also used to record their jaws snapping at remarkable speeds, which measure 5000 times faster than the blink of a human eye. Check out the ants in slow-motion in the video below.

14 Facts About Celiac Disease

iStock.com/fcafotodigital
iStock.com/fcafotodigital

Going gluten-free may be a modern diet trend, but people have been suffering from celiac disease—a chronic condition characterized by gluten intolerance—for centuries. Patients with celiac are ill-equipped to digest products made from certain grains containing gluten; wheat is the most common. In the short-term this can cause gastrointestinal distress, and in the long-term it can foster symptoms associated with early death.

Celiac diagnoses are more common than ever, which also means awareness of how to live with the condition is at an all-time high. Here are some things you might not know about celiac disease symptoms and treatments.

1. Celiac an autoimmune disease.

The bodies of people with celiac have a hostile reaction to gluten. When the protein moves through the digestive tract, the immune system responds by attacking the small intestine, causing inflammation that damages the lining of the organ. As this continues over time, the small intestine has trouble absorbing nutrients from other foods, which can lead to additional complications like anemia and osteoporosis.

2. You can get celiac disease from your parents.

Nearly all cases of celiac disease arise from certain variants of the genes HLA-DQA1 and HLA-DQB1. These genes help produce proteins in the body that allow the immune system to identify potentially dangerous foreign substances. Normally the immune system wouldn't label gliadin, a segment of the gluten protein, a threat, but due to mutations in these genes, the bodies of people with celiac treat gliadin as a hostile invader.

Because it's a genetic disorder, people with a first-degree relative (a sibling, parent, or child) with celiac have a 4 to 15 percent chance of having it themselves. And while almost all patients with celiac have these specific HLA-DQA1 and HLA-DQB1 variations, not everyone with the mutations will develop celiac. About 30 percent of the population has these gene variants, and only 3 percent of that group goes on to develop celiac disease.

3. Makeup might contribute to celiac disease symptoms.

People with celiac disease can’t properly process gluten, the protein naturally found in the grains like wheat, rye, and barley. Patients have to follow strict dietary guidelines and avoid most bread, pasta, and cereal, in order to manage their symptoms. But gluten isn’t limited to food products: It can also be found in some cosmetics. While makeup containing gluten causes no issues for many people with celiac, it can provoke rashes in others or lead to more problems if ingested. For those folks, gluten-free makeup is an option.

4. The name comes from 1st-century Greece.

A 1st-century Greek physician named Aretaeus of Cappadocia may have been the first person to describe celiac disease symptoms in writing [PDF]. He named it koiliakos after the Greek word koelia for abdomen, and he referred to people with the condition as coeliacs. In his description he wrote, “If the stomach be irretentive of the food and if it pass through undigested and crude, and nothing ascends into the body, we call such persons coeliacs.”

5. There are nearly 300 celiac disease symptoms.

Celiac disease may start in the gut, but it can be felt throughout the whole body. In children, the condition usually manifests as bloating, diarrhea, and abdominal discomfort, but as patients get older they start to experience more “non-classical” symptoms like anemia, arthritis, and fatigue. There are at least 281 symptoms associated with celiac disease, many of which overlap with other conditions and make celiac hard to diagnose. Other common symptoms of the disease include tooth discoloration, anxiety and depression, loss of fertility, and liver disorders. Celiac patients also have a greater chance of developing an additional autoimmune disorder, with the risk increasing the later in life the initial condition is diagnosed.

6. Some patients show no symptoms at all.

It’s not uncommon for celiac disease to be wrecking a patient’s digestive tract while showing no apparent symptoms. This form of the condition, sometimes called asymptomatic or “silent celiac disease,” likely contributes to part of the large number of people with celiac who are undiagnosed. People who are at high risk for the disease (the children of celiac sufferers, for example), or who have related conditions like type 1 diabetes and Down syndrome (both conditions that put patients at a greater risk for developing new autoimmune diseases) are encouraged to get tested for it even if they aren’t showing any signs.

7. It’s not the same as wheat sensitivity.

Celiac is often confused with wheat sensitivity, a separate condition that shares many symptoms with celiac, including gastrointestinal issues, depression, and fatigue. It’s often called gluten sensitivity or gluten intolerance, but because doctors still aren’t sure if gluten is the cause, many refer to it as non-celiac wheat sensitivity. There’s no test for it, but patients are often treated with the same gluten-free diet that’s prescribed to celiac patients.

8. It's not a wheat allergy either.

Celiac disease is often associated with wheat because it's one of the more common products containing gluten. While it's true that people with celiac can't eat wheat, the condition isn't a wheat allergy. Rather than reacting to the wheat, patients react to a specific protein that's found in the grain as well as others.

9. It can develop at any age.

Just because you don’t have celiac now doesn’t mean you’re in the clear for life: The disease can develop at any age, even in people who have tested negative for it previously. There are, however, two stages of life when symptoms are most likely to appear: early childhood (8 to 12 months) and middle adulthood (ages 40 to 60). People already genetically predisposed to celiac become more susceptible to it when the composition of their intestinal bacteria changes as they get older, either as a result of infection, surgery, antibiotics, or stress.

10. Not all grains are off-limits.

A gluten-free diet isn’t necessarily a grain-free diet. While it’s true that the popular grains wheat, barley, and rye contain gluten, there are plenty of grains and seeds that don’t and are safe for people with celiac to eat. These include quinoa, millet, amaranth, buckwheat, sorghum, and rice. Oats are also naturally gluten-free, but they're often contaminated with gluten during processing, so consumers with celiac should be cautious when buying them.

11. Celiac disease can be detected with a blood test.

Screenings for celiac disease used to be an involved process, with doctors monitoring patients’ reactions to their gluten-free diet over time. Today all it takes is a simple test to determine whether someone has celiac. People with the condition will have anti-tissue transglutaminase antibodies in their bloodstream. If a blood test confirms the presence of these proteins in a patient, doctors will then take a biopsy of their intestine to confirm the root cause.

12. The gluten-free diet doesn’t work for all patients.

Avoiding gluten is the most effective way to manage celiac disease, but the treatment doesn’t work 100 percent of the time. In up to a fifth of patients, the damaged intestinal lining does not recover even a year after switching to a gluten-free diet. Most cases of non-responsive celiac disease can be explained by people not following the diet closely enough, or by having other conditions like irritable bowel syndrome, lactose intolerance, or small intestine bacterial overgrowth that impede recovery. Just a small fraction of celiac disease sufferers don’t respond to a strict gluten-free diet and have no related conditions. These patients are usually prescribed steroids and immunosuppressants as alternative treatments.

13. If you don’t have celiac, gluten probably won’t hurt you.

The gluten-free diet trend has exploded in popularity in recent years, and most people who follow it have no medical reason to do so. Going gluten-free has been purported to do everything from help you lose weight to treat autism—but according to doctors, there’s no science behind these claims. Avoiding gluten may help some people feel better and more energetic because it forces them to cut heavily processed junk foods out of their diet. In such cases it’s the sugar and carbs that are making people feel sluggish—not the gluten protein. If you don’t have celiac or a gluten sensitivity, most experts recommend saving yourself the trouble by eating healthier in general rather than abstaining from gluten.

14. The numbers are growing.

A 2009 study found that four times as many people have celiac today than in the 1950s, and the spike can’t be explained by increased awareness alone. Researchers tested blood collected at the Warren Air Force Base between 1948 and 1954 and compared them to fresh samples from candidates living in one Minnesota county. The results supported the theory that celiac has become more prevalent in the last half-century. While experts aren’t exactly sure why the condition is more common today, it may have something to do with changes in how wheat is handled or the spread of gluten into medications and processed foods.

SECTIONS

arrow
LIVE SMARTER