A Year in Space Changed How Astronaut Scott Kelly's Genes Behaved


After spending 342 consecutive days onboard the International Space Station from 2015 to 2016, astronaut Scott Kelly now holds the record for longest single space mission by an American. But his "One-Year" study with NASA was about more than breaking records: Its purpose was to show how prolonged time in orbit would effect Kelly's genetic makeup compared to that of his identical twin brother on Earth. Now, following recent evaluations of the two men, it appears that Scott Kelly's gene expression was significantly altered by his time in space, Space.com reports.

NASA announced the most recent findings from its Twins Study ahead of a more comprehensive paper combining the work of multiple teams of researchers that is slated for later in 2018. Like his brother Scott, Mark is also an astronaut, making the pair the only twin astronauts in history. So when NASA was looking for a way to study the long-term effects of space life, the siblings were a perfect fit.

As Scott was sending tweets and blowing bubbles on the ISS, Mark stayed on Earth to serve as the control. Biological samples taken from both subjects before, during, and after the space flight showed some dramatic differences. According to an investigation conducted by Susan Bailey of Colorado State University, Scott's telomeres, the protective "cap" at the ends of chromosomes that shorten as we age, got longer in space. The telomeres began shrinking back to preflight levels, however, a few days after Scott's return to Earth. Scott was subjected to regular exercise and a restricted diet aboard the ISS, so the new lifestyle may explain the sudden telomere boost.

Other genetic differences stuck around even months after landing. "Although 93 percent of genes' expression returned to normal post-flight, a subset of several hundred 'space genes' were still disrupted after return to Earth," acccording to a NASA press release. About 7 percent of Scott's genes may show longer-term changes, included the genes associated with DNA repair, immune health, bone formation, hypoxia (an oxygen deficiency in the tissues) and hypercapnia (excessive carbon dioxide in the bloodstream).

A long list of factors, like radiation, caloric restriction, and zero gravity, may have contributed to the results. NASA plans to use these findings to develop countermeasures against these effects, which will be essential if the agency plans to send humans to Mars, a journey that could take three times as long as Scott Kelly's ISS mission.

[h/t Space.com]

Editor's note: We updated the headline and one line of this story to more accurately reflect the research findings. We apologize for the error. 

What Is the Kitchen Like on the International Space Station?


Clayton C. Anderson:

The International Space Station (ISS) does not really have a "kitchen" as many of us here on Earth might relate to. But, there is an area called the "galley" which serves the purpose of allowing for food preparation and consumption. I believe the term "galley" comes from the military, and it was used specifically in the space shuttle program. I guess it carried over to the ISS.

The Russian segment had the ONLY galley when I flew in 2007. There was a table for three, and the galley consisted of a water system—allowing us to hydrate our food packages (as needed) with warm (tepid) or hot (extremely) water—and a food warmer. The food warmer designed by the Russians was strictly used for their cans of food (about the size of a can of cat food in America). The U.S. developed a second food warmer (shaped like a briefcase) that we could use to heat the more "flexibly packaged" foodstuffs (packets) sent from America.

Later in the ISS lifetime, a second galley area was provided in the U.S. segment. It is positioned in Node 1 (Unity) and a table is also available there for the astronauts' dining pleasures. Apparently, it was added because of the increasing crew size experienced these days (6), to have more options. During my brief visit to ISS in 2010 (12 days or so) as a Discovery crewmember, I found the mealtimes to be much more segregated than when I spent five months on board. The Russians ate in the Russian segment. The shuttle astronauts ate in the shuttle. The U.S. ISS astronauts ate in Node 1, but often at totally different times. While we did have a combined dinner in Node 1 during STS-131 (with the Expedition 23 crew), this is one of the perceived negatives of the "multiple-galley" scenario. My long duration stint on ISS was highlighted by the fact that Fyodor Yurchikhin, Oleg Kotov, and I had every single meal together. The fellowship we—or at least I—experienced during those meals is something I will never, ever forget. We laughed, we argued, we celebrated, we mourned …, all around our zero-gravity "dinner table." Awesome stuff!

This post originally appeared on Quora. Click here to view.

Clayton "Astro Clay" Anderson is an astronaut, motivational speaker, author, and STEAM education advocate.

His award-winning book The Ordinary Spaceman, Astronaut Edition Fisher Space Pen, and new children's books A is for Astronaut; Blasting Through the Alphabet and It's a Question of Space: An Ordinary Astronaut's Answers to Sometimes Extraordinary Questions are available at www.AstroClay.com. For speaking events www.AstronautClayAnderson.com. Follow @Astro_Clay #WeBelieveInAstronauts

The Northern Lights Could Be Visible Over Parts of the U.S. This Week


Residents in the northern U.S. could be treated to a rare meteorological spectacle this week. As USA Today reports, the northern lights will likely be visible over certain states from May 15 to May 17, including Maine, Michigan, and Montana.

An aurora borealis, an event caused by solar particles colliding with atoms in Earth's atmosphere, is normally limited to countries at higher latitudes like Iceland. On rare occasions, increased activity from the Sun results in stronger and more widespread auroras on our planet.

Following a significant release of plasma and magnetic energy from the Sun's corona, the Space Weather Prediction Center announced a geomagnetic storm watch for this week. The Coronal Mass Ejections (CMEs) are expected to reach Earth on Wednesday, May 15, and persist through Friday. During that time, the prediction center says the northern lights may appear over parts of the contiguous United States. Montana, North Dakota, South Dakota, Minnesota, Wisconsin, Illinois, Michigan, New York, and most of New England all fall within the projected aurora zone.

The solar storm will peak at a G2 (moderate) level on May 16—which makes Thursday night and Friday morning the best times to catch the light show. As is the case with stars and meteor showers, people in major cities will have trouble seeing the event. Their best bet is to find a high vantage point with little light pollution.

[h/t USA Today]