CLOSE
Original image
ThinkStock

Zombies, Fire Drills, and Bad Decision-Making

Original image
ThinkStock

Imagine that the dead have risen from their graves. They’ve gotten into a building you’re hiding out in. You slink down the hallway and enter what you think is a safe room.

It’s empty, and looks like a good place to hide. As you stand in the middle of the room, you look around. There’s only two doors: the one that you came through and one on the opposite side of the room. You should be able to barricade them both with furniture. But, oh no! The zombies have found the room, too. They’re shambling around both doors, with more crowding the doorway you just used, and now you have to get out. Which door do you exit through?

The less crowded one, I’m sure you’re saying. Of course, that makes the most sense. If both doors are the same distance from where you’re standing, why not use the one that’s got fewer obstacles?

Well, science has some bad news for you: You’ll probably wind up as a snack for the living dead, or at least stuck in a crowded doorway. Stress makes us do stupid things, like seek familiar routes even if they’re not the best ones. Over and over, eyewitness reports from real-life evacuations have suggested that, in emergencies, people tend to exit buildings from the main entrance that they used to enter the building, ignoring one or more emergency exits along the way. The crowding at these entryways slows evacuation times and sometimes results in injuries and even deaths.

Earlier this year, the Science Museum of London held a zombie-themed science festival called “ZombieLab.” Researchers Nikolai Bode and Edward Codling, from the University of Essex, took advantage of the event to look at the decisions people make in emergencies. They set up a computer simulation of a room evacuation similar to what I described above. One hundred and eighty-five museum guests took control of a computer person in a virtual environment filled with 80 virtual zombies.

At the start of the experiment, the participants just had to move their person from the hallway and into the central room. Next, they had to move back out again, through one of two doors, to where they started in the hall. During this second part, the researchers presented the visitors with a few different conditions. Some just had to simply exit the room. Others were encouraged to beat the fastest exit time. Others were presented with a crowd of zombies split unevenly between the two exits. A last group had to deal with the crowed exits while trying to beat the best time.

In the normal exit scenario and when they were trying to set the best time, the museum visitors split evenly between the two exit routes and showed no clear preference for one or the other. Faced with zombie-crowded exits, though, the visitors started to show some bias for the doorway they had come through, even if it was more crowded. Presented with the zombie obstacles alone, some of the visitors went for they door they came through, and then changed their mind when they realized how crowded the doorway was. With the added pressure of the time clock, fewer people changed their mind and stuck with trying to get out that exit, even though it was the slowest route.

Bode and Codling’s results fit with what other researchers have found in theoretical models and real-life evacuations. Under stress, people make irrational decisions. Here, the museum visitors under pressure to exit quickly were more likely to stick to the route they knew even if it wound up taking them longer to get out, and were less likely to change their mind and adapt to the situation.

In a real-world situation, the researchers say, their results suggest some strategies for minimizing risks during stressful evacuations. One idea they offer is having people in large, crowded buildings enter from several different locations. If they have to get out quickly, and their preference for the way they came in holds up, they’ll spread out to different routes and avoid overcrowding any one exit.

It’s worth mentioning that the idea that the other virtual characters in the room were zombies was just meant to fit the experiment in with the theme of the festival and keep participants blind to the purpose of the experiment. In the simulation, the zombies didn’t attack participants or pose any danger, but simply blocked the doorways. The study participants didn’t have to treat them as a threat, so they focused on choosing one door or the other without worrying about getting their brains eaten. I wonder if, or how, the results would differ if the “zombies” acted more like zombies, and how decision-making in an evacuation is affected if there are obstacles at exits that pose active threats.

Original image
iStock
arrow
science
Why a Howling Wind Sounds So Spooky, According to Science
Original image
iStock

Halloween is swiftly approaching, meaning you'll likely soon hear creepy soundtracks—replete with screams, clanking chains, and howling winds—blaring from haunted houses and home displays. While the sound of human suffering is frightful for obvious reasons, what is it, exactly, about a brisk fall gust that sends shivers up our spines? In horror movie scenes and ghost stories, these spooky gales are always presented as blowing through dead trees. Do bare branches actually make the natural wailing noises louder, or is this detail added simply for atmospheric purposes?

As the SciShow's Hank Green explains in the video below, wind howls because it curves around obstacles like trees or buildings. When fast-moving air goes around, say, a tree, it splits up as it whips past, before coming back together on the other side. Due to factors such as natural randomness, air speed, and the tree's surface, one side's wind is going to be slightly stronger when the two currents rejoin, pushing the other side's gust out of the way. The two continue to interact back-and-forth in what could be likened to an invisible wrestling match, as high-pressure airwaves and whirlpools mix together and vibrate the air. If the wind is fast enough, this phenomenon will produce the eerie noise we've all come to recognize in horror films.

Leafy trees "will absorb some of the vibrations in the air and dull the sound, but without leaves—like if it's the middle of the winter or the entire forest is dead—the howling will travel a lot farther," Green explains. That's why a dead forest on a windy night sounds so much like the undead.

Learn more by watching SciShow's video below.

Original image
AFP/Stringer/Getty Images
arrow
Space
SpaceX's Landing Blooper Reel Shows That Even Rocket Scientists Make Mistakes
Original image
SpaceX's Falcon 9 rocket launches.
AFP/Stringer/Getty Images

On March 30, 2017, SpaceX did something no space program had done before: They relaunched an orbital class rocket from Earth that had successfully achieved lift-off just a year earlier. It wasn't the first time Elon Musk's company broke new ground: In December 2015, it nailed the landing on a reusable rocket—the first time that had been done—and five months later landed a rocket on a droneship in the middle of the ocean, which was also unprecedented. These feats marked significant moments in the history of space travel, but they were just a few of the steps in the long, messy journey to achieve them. In SpaceX's new blooper reel, spotted by Ars Technica, you can see just some of the many failures the company has had along the way.

The video demonstrates that failure is an important part of the scientific process. Of course when the science you're working in deals with launching and landing rockets, failure can be a lot more dramatic than it is in a lab. SpaceX has filmed their rockets blowing up in the air, disintegrating in the ocean, and smashing against landing pads, often because of something small like a radar glitch or lack of propellant.

While explosions—or "rapid unscheduled disassemblies," as the video calls them—are never ideal, some are preferable to others. The Falcon 9 explosion that shook buildings for miles last year, for instance, ended up destroying the $200 million Facebook satellite onboard. But even costly hiccups such as that one are important to future successes. As Musk once said, "If things are not failing, you are not innovating enough."

You can watch the fiery compilation below.

[h/t Ars Technica]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios