7 Science-Approved Tips for Walking Across Ice

iStock
iStock

Unless you live in a warm climate year-round where the only ice you experience involves cubes that tumble from your refrigerator door, the issue of slipping on the slick surface presents a serious concern. After all, news segments talk of treacherous conditions where people unable to gain traction slide themselves into oblivion just crossing the street. On the work front, the Bureau of Labor Statistics reports that in 2014, ice, snow, or sleet caused more than 42,000 injuries and illnesses.

And of course, there will always be viral ice-slipping videos floating around, like the one of the man who slid along the entire length of his driveway.

The very act of walking is a balancing act we take for granted. "Walking is like falling and catching yourself over and over," says Kayla Lewis, Ph.D., an assistant professor of physics at New Jersey's Monmouth University. "You lean forward and fall forward, catching yourself with your leading leg to prepare for the next step. But it's the friction between the ground and your shoes that enables you to save yourself this way; it prevents your front shoe from sliding forward and your back shoe from sliding backward."

All of this begs the question: What's the best way to walk on ice to minimize the risk of falling? To safely sashay over ice, follow the experts' advice below. Don't let their words of wisdom, you know, slip away from you.

1. MOVE SLOWLY AND STEADILY.

Clearly, instinct and common sense kicks in the moment you approach the slick surface, telling us it's virtually impossible (and not really wise) to sprint across an ice-covered driveway. Slow and easy wins the proverbial race, right?

Yes. According to Philip E. Martin, Ph.D., professor and chair of the Department of Kinesiology at Iowa State University, minimizing forward and backward force is indeed essential when walking on ice. "What's key is trying to keep force applied to the ground more vertically so there's less force forward and backward—because that's the part that requires friction," he tells Mental Floss.

2. TAKE SHORTER STEPS.

What does reducing forward-and-backward force mean practically? Taking shorter steps. When we do so, the forces applied against the ground in forward and backwards directions are reduced. Therefore, Martin says, we're not pushing as hard and are "adapting our gait to work with the reduced friction that's available to us."

3. AVOID MELTING ICE.

Mark Fahnestock, a glaciologist and research professor at the University of Alaska Fairbanks, has been studying glaciers and ice sheets for the last couple of decades, and during that time has experienced conditions at -40°F in Alaska. He says that how slippery ice becomes can vary by temperatureso being aware of temperatures can help you figure out how easy or challenging it may be to cross ice. "It's easier to walk on ice at 0°F or -20°F," he tells Mental Floss. "Ice is much slipperier when it's really melting."

Chalk that up to a film of molecules on the surface that behaves like water, he says, which "becomes more pronounced" in warmer temperatures. However, this isn't to say you won't ever slip on ice the colder the temperature gets; he emphasizes, "It's not that it's not slippery, it's just that it's not as slippery as when it's warmer."

4. GO AROUND SLOPES AND STAIRS WHEN YOU CAN.

You should also be mindful of the surface you're about to set foot on. A flat surface is one thing, but Fahnestock says that "if it's slanted where your foot meets a driveway, for example, it's not holding your weight—rather, it's your weight that's causing your foot to move."

"Gravity is going to do its thing whether you like it or not," Martin says, especially if there's an icy slope that's in a significantly downhill direction. Unfortunately, in this circumstance, you probably won't be able to adapt your gait to prevent slipping, so it's likely it'll be a score of Ice 1, Human 0.

ice caution sign next to person who slipped on ice
iStock

Stairs can make navigating ice even more treacherous, but we know it's not always possible to avoid them. According to helpful hints for walking on ice from Iowa State University, when dealing with icy steps, be sure to use handrails, keeping your hands out of your pockets, and continue to move slowly.

5. KEEP AN EYE OUT FOR CHANGING SURFACES.

Then there are circumstances where the surface characteristics can change without us realizing it. But Martin says not to fret if you're walking on a straight, dry surface and suddenly encounter an icy patch you weren't expecting. Maximum friction force is reduced when you encounter this abrupt change, causing you to quickly alter your gait. Sure, you may slip a little since it initially throws you off guard, but "humans are pretty adaptable and recognize challenges quickly," Martin says. We pay closer attention to surface characteristics than we may consciously realize, and we adjust our stride patterns automatically.

6. WEAR THE RIGHT SHOES.

And don't forget the benefits of appropriate footwear. Martin encourages people to consider a shoe's material properties, noting that a rigid leather sole is far from ideal as it offers a significantly weaker grip compared to a rubber sole. Of course, traction-improving treads, cleats, or spikes can help too.

Scientists are studying how traction varies among consumer boots. A team of researchers at iDAPT, the research arm of the Toronto Rehabilitation Institute—University Health Network, has tested and rated the slip resistance of nearly 100 boots and spikes in their WinterLab, where they study slips and falls on a floor composed entirely of ice. Testers secured into safety harnesses walk back and forth across the ice as the researchers slowly increase the angle of the floor until the tester slips. The angle at which they slip is called the "maximum achievable angle": The higher the angle, the better the slip resistance.

More than 80 percent of the boots they've tested failed to score high enough on the MAA to earn a single "snowflake" on iDAPT's three-snowflake scale, including those from popular brands like Timberland, Sorel, and Terra. The top ranked, with three snowflakes, are all Stabil spikes, which attach to your regular shoes or boot.

7. WHEN ALL ELSE FAILS, WADDLE.

Consider taking an ice-walking cue from those waddling tuxedoed ice pros: Walk like a penguin. Fahnestock says shuffling helps keep your weight in a straight-down stance, allowing your feet to carry your weight carefully and minimize slipping.

9 Not-So-Pesky Facts About Termites

iStock.com/Thithawat_s
iStock.com/Thithawat_s

Termites get a lot of hate for chewing through buildings, but the little creatures are far more interesting—and ecologically valuable—than we often give them credit for. Unless, of course, you’re Lisa Margonelli, the author of Underbug: An Obsessive Tale of Termites and Technology, a new book that explores their amazing world. Here are nine facts about the highly social—and occasionally pesky—insects that we learned from the book.

1. THERE ARE FAR MORE TERMITES THAN PEOPLE ON EARTH.

Termite queens live up to 25 years, and can lay somewhere around 30,000 eggs a day. As a result, a single mound can be home to millions of individuals at a time. While the numbers vary from study to study, scientists estimate that the biomass of all the termites in the world is at least as great as that of humans.

2. MOST TERMITES AREN’T PESTS.

Of the 2800 named termite species in the world, the majority have no interest in eating your house. Only 28 species are known to chow down on buildings and infrastructure. Most are actually very beneficial to their ecosystems, clearing dead wood, aerating the soil with their intricate tunnel systems, and enhancing plant growth. Researchers have found that contrary to being pests, networks of termite mounds can help make dry environments like savannas more resilient to climate change because of the way termite mounds store nutrients and moisture, among other benefits.

3. TERMITES ARE GOOD FOR CROPS.

Termites can help make soil more fertile. In one study, researchers in Australia found that fields that were home to ants and termites produced 36 percent more wheat, without fertilizer, compared to non-termite fields. Why? Termites help fertilize the soil naturally—their poop, which they use to plaster their tunnels, is full of nitrogen. Their intricate system of underground tunnels also helps rainfall penetrate the soil more deeply, which reduces the amount of moisture that evaporates from the dirt and makes it more likely that the water can be taken up by plants.

4. TERMITES HAVE VERY SPECIFIC ROLES IN THEIR COLONY.

Each termite colony has a queen and king termite (or several), plus workers and soldiers. This caste system, controlled by pheromones produced by the reigning queen, determines not just what different termites do in the colony but how they look. Queens and kings develop wings that, when they’re sexually mature, they use to fly away from their original nest to reproduce and start their own colony. Once they land at the site of their new colony, queens and kings snap off these wings, since they’ll spend the rest of their lives underground. Queens are also physically much larger than other castes: The largest type of termite, an African species called Macrotermes bellicosus, produces queens up to 4 inches long.

Unlike their royal counterparts, most workers and soldiers don’t have either eyes or wings. Worker termites, which are responsible for foraging, building tunnels, and feeding the other castes in the nest, are significantly smaller than queens. M. bellicosus workers, for instance, measure around 0.14 inches. Soldier termites are slightly bigger than workers, with large, sharp mandibles designed to slice up ants and other enemies that might invade the nest.

5. TERMITES ARE ONE OF THE FASTEST ANIMALS IN THE WORLD.

Apologies to cheetahs, but termites hold the record for world’s fastest animal movement. Panamanian termites can clap their mandibles shut at 157 miles per hour. (Compare that to the cheetah’s run, which tops out at about 76 miles per hour.) This quick action allows tiny termite soldiers in narrow tunnels to kill invaders with a single bite.

6. TERMITES ARE SKILLED ARCHITECTS.

In Namibia, quarter-inch-long termites of the genus Macrotermes can move 364 pounds of dirt and 3300 pounds of water each year total in the course of building their 17-foot-tall mounds. Relative to their size, that’s the equivalent of humans building the 163 floors of Dubai’s Burj Khalifa, no cranes required. And that’s not even the tallest termite mound around—some can be up to 30 feet high. More impressively, termites cooperate to build these structures without any sort of centralized plan. Engineers are now trying to replicate this decentralized swarm intelligence to build robots that could erect buildings in a similar fashion.

7. TERMITES BUILD THEIR OWN AIR CONDITIONING.

Some termites have developed an incredibly efficient method of climate control in the form of tall, above-ground mounds that sit above their nests. Organized around a central chimney, the structures essentially act as giant lungs, "breathing" air in and out as the temperature outside changes in relation to the temperature inside. Thanks to these convection cycles, termites keep underground temperatures in their nest between roughly 84°F and 90°F.

8. TERMITES ARE FARMERS.

Humans aren’t the only ones cultivating crops. Termites farm, too. They’ve been doing it for more than 25 million years, compared to humans’ 23,000 years. Some species of termite have evolved a symbiotic relationship with Termitomyces fungi, growing fungus in underground gardens for food. When they fly off to create a new colony, termite queens bring along fungus spores from their parent colony to seed the garden that will feed their new nest. Foraging termite workers go out and eat plant material that they can’t fully digest on their own, then deposit their feces on the fungus for it to feed on. They can then eat the fungus. They may also be able to eat some of the plant material after the fungus has sufficiently broken it down. The mutually beneficial relationship has led some scientists to suggest that the fungus, which is much larger in both size and energy production than the termites, could in fact be the one in control of the relationship, potentially releasing chemical pheromones that lead the termites to build the mound they live in together.

9. TERMITES ARE MICROBIAL GOLD MINES.

As scientists begin to understand the huge role that micobiomes play in both the human body and the rest of the world, termites provide a fascinating case study. About 90 percent of the organisms in termite guts aren’t found anywhere else on Earth. In their hindgut alone, they host as many as 1400 species of bacteria. These microbes are so efficient at converting the cellulose-rich wood and dead grass that termites eat into energy, scientists want to harness them to make biofuel from plants.

Want to learn more about termites? Get yourself a copy of Underbug on Amazon for $18.

This Live Stream Lets You Eavesdrop on Endangered Killer Whales' Conversations

iStock.com/Serega
iStock.com/Serega

Southern resident killer whales, which are usually found off the coasts of Washington, Oregon, and British Columbia, are an endangered species. If you're lucky, though, you might be able to hear a pod of the killer whales chattering away from the comfort of your own home. A website spotted by The Kansas City Star lets you live stream the calls of killer whales from your phone or laptop. Dubbed Orcasound, it uses hydrophones (underwater microphones) to pick up oceanic sounds from two areas off the coast of Washington.

On the website, listeners can choose between the two locations. One is the Orcasound Lab in Haro Strait, which is situated off the coast of Washington's San Juan Islands—the "summertime habitat" of this specific ecotype of whale, according to the website. The other location is Bush Point at the entrance to Puget Sound, where the whales pass through about once a month in search of salmon. However, that hydrophone is currently being repaired.

So what do orcas sound like? They're loud, and they do a whole lot of whistling, whining, and clicking. You can hear a snippet of what that sounds like in a four-minute podcast uploaded to the Orcasound site.

There’s no guarantee you’ll hear an orca, though. "Mostly you'll hear ships," the website notes, but there's also a chance you'll hear humpbacks in the fall and male harbor seals in the summer.

The live stream isn't just for educational purposes. It also serves as a citizen science project to help researchers continue their studies of southern resident killer whales, which are in danger of starvation as Chinook salmon, their main food source, die off.

The makers of Orcasound are urging listeners to email ihearsomething@orcasound.net anytime they hear killer whales or "other interesting sounds." They can also log their observations in a shared Google spreadsheet. Eventually, developers of the site hope to roll out a button that listeners can click when they hear a whale, to make the process easier for people to get involved.

[h/t The Kansas City Star]

SECTIONS

arrow
LIVE SMARTER