Researchers Claim to Crack the Voynich Manuscript Using AI, But Experts Are Skeptical

Computing scientists at the University of Alberta recently made a bold claim: They say they’ve identified the source language of the baffling Voynich Manuscript, and they did so using artificial intelligence.

Their study, published in Transactions of the Association of Computational Linguistics [PDF], basically states that an AI algorithm trained to recognize hundreds of languages determined the Voynich Manuscript to be encoded Hebrew. On the surface, this looks like a huge breakthrough: Since it was rediscovered a century ago, the Voynich Manuscript’s indecipherable text has stumped everyone from World War II codebreakers to computer programmers. But experts are hesitant to give credence to the news. “I have very little faith in it,” cryptographer Elonka Dunin tells Mental Floss. “Hebrew, and dozens of other languages have been identified before. Everyone sees what they want to see.”

Anyone who’s familiar with the Voynich Manuscript should understand the skepticism. The book, which contains 246 pages of illustrations and apparent words written in an unknown script, is obscured by mystery. It’s named for Wilfrid Voynich, the Polish book dealer who purchased it in 1912, but experts believe it was written 600 years ago. Nothing is known about the person who authored it or the book’s purpose.

Many cryptologists suspect the text is a cipher, or a coded pattern of letters that must be unscrambled to make sense. But no code has been identified even after decades of the world’s best cryptographers testing countless combinations. With their study, the researchers at the University of Alberta claim to have done something different. Instead of relying on human linguists and codebreakers, they developed an AI program capable of identifying the source languages of text. They fed the technology 380 versions of the Universal Declaration of Human Rights, each one translated into a different language and enciphered. After learning to recognize codes in various languages, the AI was given some pages of the Voynich Manuscript. Based on what it had seen already, it named Hebrew as the book’s original language—a surprise to the researchers, who were expecting Arabic.

The researchers then devised an algorithm that rearranged the letters into real words. They were able to make actual Hebrew out of 80 percent of the encoded words in the manuscript. Next, they needed to find an ancient Hebrew scholar to look at the words and determine if they fit together coherently.

But the researchers claim they were unable to get in touch with any scholars, and instead used Google Translate to make sense of the first sentence of the manuscript. In English, the decoded words they came up with read, “She made recommendations to the priest, man of the house and me and people." Study co-author Greg Kondrak said in a release, “It’s a kind of strange sentence to start a manuscript but it definitely makes sense.”

Dunin is less optimistic. According to her, naming a possible cipher and source language without actually translating more of the text is no cause for celebration. “They identify a method without decrypting a paragraph,” she says. Even their method is questionable. Dunin points out the AI program was trained using ciphers that the researchers themselves wrote, not ciphers from real life. “They scrambled the texts using their own system, then they used their own software to de-scramble those. Then they used it on the manuscript and said, ‘Oh look, it’s Hebrew!’ So it’s a big, big leap.”

The University of Alberta researchers aren’t the first to claim they’ve identified the language of the Voynich Manuscript, and they won’t be the last. But unless they’re able the decode the full text into a meaningful language, the manuscript remains as mysterious today as it did 100 years ago. And if you agree with cryptographers like Dunin who think the book might be a constructed language, a detailed hoax, or even a product of mental illness, it’s a mystery without a satisfying explanation.

Some Mathematicians Think the Equal Sign is On Its Way Out

Paperkites/iStock via Getty Images
Paperkites/iStock via Getty Images

A growing number of mathematicians are skeptical that the equal sign, traditionally used to show exact relationships between sets of objects, holds up to new mathematical models, WIRED reports.

To understand their arguments, it’s important to understand set theory—a theory of mathematics that’s been around since at least the 1870s [PDF]. Take the classic formula 1+1=2. Say you have four pieces of fruit—an apple, an orange, and two bananas—and you put the apple and the orange on one side of a table and the two bananas on the other. In set theory, that’s an equation: One piece of fruit plus one piece of fruit on the left side of the table equals two pieces of fruit on the right side of the table. The two sets, or collections of objects, are the same size, so they’re equal.

But here’s where it gets complicated. What if you put an apple and a banana on the left side of the table and an orange and a banana on the other side? That’s clearly different from the first scenario, but set theory writes it as the same thing: 1+1=2. What if you switched the order of the first set of objects, so instead of having an apple and an orange, you had an orange and an apple? What if you had only bananas? There are potentially infinite scenarios, but set theory is limited to expressing them all in only one way.

“The problem is, there are many ways to pair up,” Joseph Campbell, a mathematics professor at Duke University, told Quanta Magazine. “We’ve forgotten them when we say ‘equals.’”

A better alternative is the idea of equivalence, some mathematicians say [PDF]. Equality is a strict relationship, but equivalence comes in different forms. The two-bananas-on-each-side-of-the-table scenario is considered strong equivalence—all of the elements in both sets are the same. The scenario where you have an apple and an orange on one side and two bananas on the other? That’s a slightly weaker form of equivalence.

A new wave of mathematicians is turning to the idea of category theory [PDF], which is based in understanding the relationships between different objects. Category theory is better than set theory at dealing with equivalence, and it’s also more universally applicable to different branches of mathematics.

But a switch to category theory won’t come overnight, according to Quanta. Interpreting equations using equivalence rather than equality is much more complicated, and it requires relearning and rewriting everything about mathematics—even down to algebra and arithmetic.

“This complicates matters enormously, in a way that makes it seem impossible to work with this new version of mathematics we’re imagining,” mathematician David Ayala told Quanta.

Several mathematicians are at the forefront of category theory research, but the field is still relatively young. So while the equal sign isn’t passé just yet, it’s likely that an oncoming mathematical revolution will change its meaning.

[h/t Wired]

7 Facts About Blood

Moussa81/iStock via Getty Images
Moussa81/iStock via Getty Images

Everyone knows that when you get cut, you bleed—a result of the constant movement of blood through our bodies. But do you know all of the functions the circulatory system actually performs? Here are some surprising facts about human blood—and a few cringe-worthy theories that preceded the modern scientific understanding of this vital fluid.

1. Doctors still use bloodletting and leeches to treat diseases.

Ancient peoples knew the circulatory system was important to overall health. That may be one reason for bloodletting, the practice of cutting people to “cure” everything from cancer to infections to mental illness. For the better part of two millennia, it persisted as one of the most common medical procedures.

Hippocrates believed that illness was caused by an imbalance of four “humors”—blood, phlegm, black bile, and yellow bile. For centuries, doctors believed balance could be restored by removing excess blood, often by bloodletting or leeches. It didn’t always go so well. George Washington, for example, died soon after his physician treated a sore throat with bloodletting and a series of other agonizing procedures.

By the mid-19th century, bloodletting was on its way out, but it hasn’t completely disappeared. Bloodletting is an effective treatment for some rare conditions like hemochromatosis, a hereditary condition causing your body to absorb too much iron.

Leeches have also made a comeback in medicine. We now know that leech saliva contains substances with anti-inflammatory, antibiotic, and anesthetic properties. It also contains hirudin, an enzyme that prevents clotting. It lets more oxygenated blood into the wound, reducing swelling and helping to rebuild tiny blood vessels so that it can heal faster. That’s why leeches are still sometimes used in treating certain circulatory diseases, arthritis, and skin grafting, and helps reattach fingers and toes. (Contrary to popular belief, even the blood-sucking variety of leech is not all that interested in human blood.)

2. Scientists didn't understand how blood circulation worked until the 17th century.

William Harvey, an English physician, is generally credited with discovering and demonstrating the mechanics of circulation, though his work developed out of the cumulative body of research on the subject over centuries.

The prevailing theory in Harvey’s time was that the lungs, not the heart, moved blood through the body. In part by dissecting living animals and studying their still-beating hearts, Harvey was able to describe how the heart pumped blood through the body and how blood returned to the heart. He also showed how valves in veins helped control the flow of blood through the body. Harvey was ridiculed by many of his contemporaries, but his theories were ultimately vindicated.

3. Blood types were discovered in the early 20th century.

Austrian physician Karl Landsteiner discovered different blood groups in 1901, after he noticed that blood mixed from people with different types would clot. His subsequent research classified types A, B and O. (Later research identified an additional type, AB). Blood types are differentiated by the kinds of antigens—molecules that provoke an immune system reaction—that attach to red blood cells.

People with Type A blood have only A antigens attached to their red cells but have B antigens in their plasma. In those with Type B blood, the location of the antigens is reversed. Type O blood has neither A nor B antigens on red cells, but both are present in the plasma. And finally, Type AB has both A and B antigens on red cells but neither in plasma. But wait, there’s more! When a third antigen, called the Rh factor, is present, the blood type is classified as positive. When Rh factor is absent, the blood type is negative.

Scientists still don’t understand why humans have different blood types, but knowing yours is important: Some people have life-threatening reactions if they receive a blood type during a transfusion that doesn’t “mix” with their own. Before researchers developed reliable ways to detect blood types, that tended to turn out badly for people receiving an incompatible human (or animal!) blood transfusion.

4. Blood makes up about 8 percent of our total body weight.

Adult bodies contain about 5 liters (5.3 quarts) of blood. An exception is pregnant women, whose bodies can produce about 50 percent more blood to nourish a fetus.)

Plasma, the liquid portion of blood, accounts for about 3 liters. It carries red and white blood cells and platelets, which deliver oxygen to our cells, fight disease, and repair damaged vessels. These cells are joined by electrolytes, antibodies, vitamins, proteins, and other nutrients required to maintain all the other cells in the body.

5. A healthy red blood cell lasts for roughly 120 days.

Red blood cells contain an important protein called hemoglobin that delivers oxygen to all the other cells in our bodies. It also carries carbon dioxide from those cells back to the lungs.

Red blood cells are produced in bone marrow, but not everyone produces healthy ones. People with sickle cell anemia, a hereditary condition, develop malformed red blood cells that get stuck in blood vessels. These blood cells last about 10 to 20 days, which leads to a chronic shortage of red blood cells, often causing to pain, infection, and organ damage.

6. Blood might play a role in treating Alzheimer's disease.

In 2014, research led by Stanford University scientists found that injecting the plasma of young mice into older mice improved memory and learning. Their findings follow years of experiments in which scientists surgically joined the circulatory systems of old and young mice to test whether young blood could reverse signs of aging. Those results showed rejuvenating effects of a particular blood protein on the organs of older mice.

The Stanford team’s findings that young blood had positive effects on mouse memory and learning sparked intense interest in whether it could eventually lead to new treatments for Alzheimer’s disease and other age-related conditions.

7. The sight of blood can make people faint.

For 3 to 4 percent of people, squeamishness associated with blood, injury, or invasive medical procedures like injections rises to the level of a true phobia called blood injury injection phobia (BII). And most sufferers share a common reaction: fainting.

Most phobias cause an increase in heart rate and blood pressure, and often muscle tension, shakes, and sweating: part of the body’s sympathetic nervous system’s “fight or flight” response. But sufferers of BII experience an added symptom. After initially increasing, their blood pressure and heart rate will abruptly drop.

This reaction is caused by the vagus nerve, which works to keep a steady heart rate, among other things. But the vagus nerve sometimes overdoes it, pushing blood pressure and heart rate too low. (You may have experienced this phenomenon if you’ve ever felt faint while hungry, dehydrated, startled, or standing up too fast.) For people with BII, the vasovagal response can happen at the mere sight or suggestion of blood, needles, or bodily injury, making even a routine medical or dental checkup cause for dread and embarrassment.

SECTIONS

arrow
LIVE SMARTER