The Secret Cold War History of the Missile That Launched America's First Satellite

NASA/JPL
NASA/JPL

In 1950, a group of scientists proposed the International Geophysical Year (IGY), a sort of "Science Olympics" in which nations of the world would embark on ambitious experiments and share results openly and in the spirit of friendship. The IGY, they decided, would be celebrated in 1957.

As part of the IGY, the Soviet Union vowed that it would launch an artificial satellite for space science. The U.S., not to be left behind, said that it, too, would launch a satellite. Both countries had ulterior motives, of course; the ostensibly friendly rivalry in the name of science allowed the two superpowers, already engaged in the Cold War, to quite openly develop and test long-range ballistic missiles under the guise of "friendship."

The Soviet Union aimed to develop missiles capable of reaching both western Europe and the continental United States. Such "intercontinental ballistic missiles," a.k.a. ICBMs, would, Nikita Khrushchev hoped, neutralize the overwhelming nuclear superiority of America, which had a $1 billion squadron of B-52 bombers. Their development would solve another of the Soviet Union's pressing issues: Military expenditures were gobbling up one-fifth of the economy, while agricultural output was in a severe decline. In short, there were too many bullets being produced, and not enough bread. Long-range rockets armed with nuclear weapons, already in the Soviet arsenal, could allow Khrushchev to slash the size and expense of the Red Army, forego a heavy long-range bomber fleet, and solve the food problems plaguing the country.

Meanwhile, in the United States, an Army major general named John Bruce Medaris saw a big opportunity in the International Geophysical Year: to use a missile designed for war—which the Army had been prohibited from developing further—to launch a satellite into space. But Medaris, who commanded the Army Ballistic Missile Agency in Huntsville, Alabama, would need to be creative about selling it to the Department of Defense.

AN EDICT: NO ROCKETS OVER 200 MILES

Medaris was working under heavy restrictions against stiff competition. In 1956, the Secretary of Defense, Charlie Erwin Wilson, had issued an edict expressly forbidding the Army from even planning to build, let alone employ, long-range missiles "or for any other missiles with ranges beyond 200 miles." Land-based intermediate- and long-range ballistic missiles were now to be the sole responsibility of the Air Force, while the Navy had authority for the sea-launched variety.

The idea was to avoid program redundancy and free up money to pay for the B-52 fleet, but the edict wound up having a catastrophic effect on the American missile program and its space ambitions, as author Matthew Brzezinski recounts in Red Moon Rising: Sputnik and the Hidden Rivalries That Ignited the Space Age.

At the time of Wilson's injunction, the Army's rocketry program was far ahead of the Air Force's or Navy's. The Army had just tested a rocket prototype called Jupiter that flew 3000 miles—but it was the new and flourishing Air Force that had the political backing of Washington. Moreover, few in the capital were worried about the Soviets developing long-range missile capability. Yes, they were trying, but they didn't have a prayer at developing one before the technically advanced United States, and in the meantime, the U.S. had overwhelming nuclear bomber superiority. When you got right down to it—the DOD reasoning went—who cared whether the Army, Air Force, or Navy developed our missiles?

Major General Medaris cared. He believed that, thanks to a German aerospace engineer named Wernher von Braun, the Army Ballistic Missile Agency had made too much progress on ballistic missile technology to just stop working on them now.

In the aftermath of World War II, the United States—and the Soviets—had scrambled to gather German missile technology. The U.S. lacked the ability to develop anything as powerful as Germany's lethal V-2 rocket and desperately wanted not only as much V-2 hardware as it could find but the V-2 designer himself, von Braun.

The U.S. succeeded in recruiting the engineer, ultimately assigning him to the Army's missile agency in 1950. There Von Braun and his team developed and deployed the Redstone, a short-range missile that could travel 200 miles. (This is where Wilson's 200-mile limitation came from.) Von Braun also began work on a research rocket (in parlance, a sounding rocket) based on the Redstone that could fly 1200 miles. It was not, technically, a missile—it wasn't designed to carry deadly ordnance. Its purpose was to test thermal nose-cone shields. This rocket was called the Jupiter C.

The 1956 injunction on Army missile development threatened the tremendous progress the Army had made. Both Medaris, who led the Army's missile program, and von Braun, who had now spent years trying to advance the rocket technology of the United States, were infuriated.

ARMY VS. NAVY (VS. THE SOVIETS)

With the IGY deadline looming, Medaris saw an opportunity to save the Army's role in rocket design. He had the genius German engineer and all the hardware necessary to do the job.

Medaris began to wage bitter bureaucratic warfare to protect the Army's missile program. The Air Force's program, he pointed out to defense officials, seemed not to be going anywhere—there was simply not much rush to replace bomber pilots with long-range missiles in a pilot-led organization. Worse yet, the Naval Research Laboratory, which had been given charge of the U.S. satellite entry for the IGY, was hopelessly behind schedule and underfunded. The Navy's Vanguard program, as it was called, would never succeed in its goal on time. (Why, then, did the Navy get the coveted assignment? In large measure because the Naval Research Laboratory was an essentially civilian organization, which just seemed more in the spirit of the International Geophysical Year.)

design plan of explorer 1 satellite
NASA/Marshall Space Flight Center Collection

Through all of this, it never occurred to Medaris that he was actually in a Space Race against the Soviet Union. To his mind, he was competing against the other branches of the U.S. military. To keep his missile program alive while he waged war in Washington, he allowed von Braun to continue work on ablative nose cone research using the Jupiter C research rocket. Not missile—Medaris could not emphasize that point enough to the Department of Defense. It was a research rocket, he stressed, and therefore exempt from the ban on Army missile development.

Medaris argued to Secretary Wilson that if they just gave the Jupiter C a fourth stage—that is, basically, a rocket on top of the rocket—it could reach orbital velocity of 18,000 miles per hour and get a satellite up there.

All of his arguments fell on deaf ears. "Not only were Medaris's pleas gruffly rebuffed," writes Brzezinski, but Wilson "spitefully ordered the general to personally inspect every Jupiter C launch to make sure the uppermost stage was a dud so that Von Braun did not launch a satellite 'by accident.'"

So instead, Medaris made sure that Jupiter C "nose-cone research" plunged ahead. It simulated everything about a long-range, satellite-capable ballistic missile, but it was not a missile. The Jupiter C kept the Army in the rocket development business. Just in case something went south with the Navy's Vanguard program, however, Medaris had two Jupiter C rockets put into storage. Just in case.

AND THEN CAME SPUTNIK

Two events would happen in 1957, the International Geophysical Year, that changed the trajectory of history. First: Secretary Wilson, who so vexed the Army missile program, retired. On October 4, 1957, his replacement, Neil McElroy, soon to be confirmed by the Senate, visited Huntsville to tour the Army Ballistic Missile Agency. Second: Later that same day, the Soviet Union stunned the world by launching Sputnik-1 into orbit and ushering humankind into the Space Age.

Von Braun was apoplectic. He'd devoted his life to rocketry. To be beaten by the Soviets! "For God's sake," he implored McElroy, "cut us loose and let us do something! We have the hardware on the shelf." He asked the incoming secretary for just 60 days to get a rocket ready.

McElroy couldn't make any decisions until he was confirmed, but that didn't faze Medaris, who was so certain that his group would get the go-ahead to launch a satellite that he ordered von Braun to get started on launch preparations.

What Medaris didn't anticipate was the Eisenhower White House's response to Sputnik. Rather than appear reactionary or spooked by the Soviet's sudden access to the skies over the U.S., the President assured the American people that there was a plan already in place, and everything was fine—really. The Navy's Vanguard program would soon launch a satellite as scheduled.

One month later, there was indeed another launch—by the Soviet Union. This time the satellite was a dog named Laika. In response, both Medaris and von Braun threatened to quit. To pacify them, the Defense Department promised that they could indeed launch a satellite in January, after the Vanguard's launch. von Braun, satisfied that he would get his shot, had a prediction to make: "Vanguard," he said, "will never make it."

And he was right. On December 6, 1957, the nation watched from television as the Vanguard launch vehicle began countdown from a virtually unknown expanse of Florida swampland called Cape Canaveral. At liftoff, the rocket rose a few feet—then blew up.

THE SECRET IDENTITY OF MISSILE NO. 29

After the Navy's failure, the Army was back in business. Medaris had his approval. The Jupiter C rocket would be allowed to carry a satellite called Explorer-1 to space.

Unlike the public outreach that accompanied the Vanguard launch, however, Medaris's rocket readying was done in total secrecy. The upper stages of the rocket were kept under canvas shrouds. The rocket was not to be acknowledged by Cape Canaveral personnel as the rocket, but rather, only as a workaday Redstone rocket. In official communications, it was simply called "Missile Number 29."

The Jupiter C destined to carry the spacecraft was one of the rockets placed in storage "just in case" after the Army was locked out of the long-range missile business. On the launch pad, however, it would be called "Juno." (The name change was in part an effort to conceal the rocket's V-2 and military lineage.) Explorer-1 was built by Jet Propulsion Laboratory at the California Institute of Technology. JPL had worked with the Army "just in case" the Navy's Vanguard program failed. ("We bootlegged the whole job," said William Pickering, the then-director of the JPL lab.) The onboard scientific instrument, a Geiger counter developed by James Van Allen of the University of Iowa, had also been designed with the Army's rocket in mind … just in case.

Medaris wanted no publicity for his launch. No VIPs, no press, no distractions. Even the launch day was to be kept secret until the Explorer-1 team could confirm that the satellite had achieved orbit successfully.

And then 60 years ago today, Explorer-1 left Earth from launch pad 26 at the cape. The response is best captured by the breathless headline atop the front page of the New York Times [PDF] the following morning: "ARMY LAUNCHES U.S. SATELLITE INTO ORBIT; PRESIDENT PROMISES WORLD WILL GET DATA; 30-POUND DEVICE IS HURLED UP 2,000 MILES."


NASA/JPL

America's first satellite would go on to circle the Earth 58,000 times over the span of 12 years. The modest science payload was the first ever to go into space, and the discovery of the Van Allen belts—caused by the capture of the solar wind's charged particles by the Earth's magnetic field—established the scientific field of magnetospheric research.

Six months after the spacecraft launched, the U.S. would establish the National Aeronautics and Space Administration, a.k.a. NASA. (For the next three years, however, the Soviet Union would continue to dominate the Space Race, establishing a long run of "firsts," including placing the first human in space.) Wernher von Braun became director of Marshall Space Flight Center in Huntsville and was chief architect of the Saturn V rocket that powered the Moon missions. Jet Propulsion Laboratory has since launched more than 100 spacecraft across the solar system and beyond.

The unsung hero today, of course, is Major General Bruce Medaris, whose tenacity righted the U.S. rocket program. It is impossible to know how the Space Race might have ended without his contributions. We do know how his career ended, though. When at last he retired from the military, he rejected overtures to advise John F. Kennedy on space policy. Instead, he took a job as president of the Lionel Corporation, famed for its toy trains. He eventually set his sights on the heavens, literally, and entered the priesthood. He died in 1990 and is buried in Arlington National Cemetery, his legacy forever set among the stars.

For further reading, see Matthew Brzezinski's Red Moon Rising: Sputnik and the Hidden Rivalries That Ignited the Space Age.

How to See the Full Sturgeon Moon on Thursday

Brook Mitchell, Stringer/Getty Images
Brook Mitchell, Stringer/Getty Images

The full moon of every month has a special nickname. Some—like September's harvest moon, December's cold moon, and May's flower moon—have obvious connections to their seasons, while other names are harder to decode. August's sturgeon moon is an example of the latter. It may not be the prettiest lunar title in The Old Farmer's Almanac, but that doesn't mean the event itself on August 15, 2019 won't be a spectacular sight to behold.

What is a Full Sturgeon Moon?

The first (and normally the only) full moon that occurs in August is called a sturgeon moon. The name may have originated with Native American tribes living around the Great Lakes in the Midwest and Lake Champlain in New England. These bodies of water contain lake sturgeon, a species of freshwater fish that grows up to 6.5 feet in length and can live 55 years or longer. August's full moon was dubbed the sturgeon moon to reflect its harvesting season. This full moon is sometimes called the green corn moon, the grain moon, and the blackberry moon for similar reasons.

When to See the Full Sturgeon Moon

On Thursday, August 15, the full sturgeon moon will be highly visible around sunrise and sunset. The satellite will be 99.9 percent illuminated by the sun when it sets Thursday morning at 5:57 a.m EDT—just nine minutes before dawn. On the West Coast, the setting moon will coincide perfectly with the rising sun at 6:15 a.m. PDT.

If you aren't interested in getting out of bed early to catch the sturgeon moon, wait until Thursday evening to look to the horizon. Twenty-seven minutes after sunset, the full moon will rise on the East Coast at 8:21 p.m. EDT. On the West Coast it rises at 8:10 p.m. PDT, 30 minutes after the sun sets.

The moon generally looks bigger and brighter when it's near the horizon, so twilight and dawn are ideal times to catch the spectacle. But it's worth taking another peek at the sky closer to midnight Thursday night; the Perseid meteor shower is currently active, and though the light of the moon may wash them out, you're most likely to spot a shooting star in the late night and early morning hours.

A Full Harvest Moon Is Coming in September

suerob/iStock via Getty Images
suerob/iStock via Getty Images

The Old Farmer's Almanac lists a special name for every month's full moon, from January's wolf moon to December's cold moon. Even if you're just a casual astronomy fan, you've likely heard the name of September's full moon. The harvest moon is the full moon that falls closest to the fall equinox, and it's associated with festivals celebrating the arrival of autumn. Here's what you need to know before catching the event this year.

What is a harvest moon?

You may have heard that the harvest moon is special because it appears larger and darker in the night sky. This may be true depending on what time of night you look at it, but these features are not unique to the harvest moon.

Throughout the year, the moon rises on average 50 minutes later each night than it did the night before. This window shrinks in the days surrounding the fall equinox. In mid-latitudes, the moon will rise over the horizon only 25 minutes to 30 minutes later night after night. This means the moonrise will occur around sunset several evenings in a row.

So what does this mean for the harvest moon? If you're already watching the sunset and you catch the moonrise at the same time, it will appear bigger than usual thanks to something called the moon illusion. It may also take on an orange-y hue because you're gazing at it through the thick filter of the Earth's atmosphere, which absorbs blue light and projects red light. So if you've only seen the full harvest moon around sunset, you may think it always looks especially big and orange, while in reality, any full moon will look that way when it's just above the horizon.

When to See the Harvest Moon

This year, the harvest moon will be visible the night of Saturday, September 14—about a week before the fall equinox on September 23. The moon will reach its fullest state at 12:33 a.m. ET—but if you're still convinced it's not a true harvest moon without that pumpkin-orange color, you can look for it at moonrise at 7:33 p.m. on September 13.

SECTIONS

arrow
LIVE SMARTER