Original image

German Chemists Invent a Lifeline

Original image

The First World War was an unprecedented catastrophe that killed millions and set the continent of Europe on the path to further calamity two decades later. But it didn’t come out of nowhere. With the centennial of the outbreak of hostilities coming up in 2014, Erik Sass will be looking back at the lead-up to the war, when seemingly minor moments of friction accumulated until the situation was ready to explode. He'll be covering those events 100 years after they occurred. This is the 84th installment in the series.

September 9, 1913: Germany’s Lifeline, the Haber-Bosch Process

Saltpeter, the active ingredient in gunpowder, is actually a group of chemically similar compounds such as potassium nitrate and sodium nitrate, whose common component can be guessed from their names: nitrogen. Until the early 20th century these nitrate compounds, which are also key ingredients in fertilizer, could only be found in big amounts in natural deposits, the largest of which were found in South America. But on the eve of the Great War, German chemists discovered a way to synthesize nitrates artificially – a momentous achievement that allowed Germany to fight on for four long years after its overseas sources of nitrates were cut off by the British blockade.

At first glance it might seem easy to find nitrogen, since it is a very common element, making up just over 78% of the Earth’s atmosphere. But even though it’s in the air we breathe, atmospheric nitrogen is so stable when bonded to itself in a “diatomic” state (N2) that it just won’t react with other chemicals under ordinary conditions – in short, you can’t do anything with it because there’s no way to get it out of the air. And that was how it stayed until German scientists, armed with the resources of the world’s most advanced industrial state, applied themselves to the problem. 

By the turn of the 20th century Germany was the undisputed world leader in the new chemical and pharmaceutical manufacturing industries, the legacy of Prussia’s early lead in industrial production of dyes. Not coincidentally, Germany also led Europe in electricity production, which fueled the new industries. These factors converged in 1909, when the German chemist Fritz Haber figured out how to “fix” atmospheric nitrogen using large amounts of energy under very high pressures.

By raising the pressure to around 200 atmospheres, boosting the temperature to 450 degrees Celsius, and using iron as a catalyst, Haber was able to trigger a reaction in which one molecule of atmospheric nitrogen (N2) split and recombined with three molecules of atmospheric hydrogen (3 H2) to form two molecules of ammonia (2 NH3). Then, using a separate process developed by Wilhelm Ostwald in 1902, the ammonia could be converted to nitric acid (HNO3), which can in turn be used to produce nitrate compounds.

Executives from BASF immediately grasped the huge potential of the discovery when Haber demonstrated the process for making ammonia them in 1909: aside from the whole munitions issue, the Haber process stood to revolutionize fertilizer manufacturing and make agriculture more productive. Playing for high stakes, BASF went all in, wagering its financial future on the invention.

Making a Lot of the Ammonia You Buy Better

After buying the formula from Haber, BASF turned to another chemist, Carl Bosch, to figure out how to begin producing ammonia from atmospheric nitrogen on an industrial scale. After four years of work (and a very substantial investment in facilities and equipment, including high-pressure, high-temperature blast furnaces) on September 9, 1913, a BASF plant in Oppau, Germany, began producing ammonia at the rate of several tons per day, increasing to 20 tons per day by the following year. During the war the German government frantically scaled up capacity to an awesome 500,000 tons of ammonia per year, although actual production was only about half this.

While the Haber-Bosch Process lengthened the Great War by enabling Germany to fight on, its benefits for humanity are undeniable. Currently it is estimated that about half the protein in our bodies is made up of nitrogen fixed using the Haber-Bosch Process, while one third of the planet’s population depends for most of its nutrition on food grown using artificial fertilizers produced with the process. Haber and Bosch both eventually received Nobel prizes for their work (Haber in 1918, Bosch in 1931).

Of course, even when intended for a good purpose, nitrates can be incredibly dangerous: on September 21, 1921 a giant explosion leveled a large part of the Oppau plant (pictured above, after the explosion), killing 600 people and leaving a massive crater on the site.

See the previous installment or all entries.

Original image
iStock // Ekaterina Minaeva
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
© Nintendo
Nintendo Will Release an $80 Mini SNES in September
Original image
© Nintendo

Retro gamers rejoice: Nintendo just announced that it will be launching a revamped version of its beloved Super Nintendo Classic console, which will allow kids and grown-ups alike to play classic 16-bit games in high-definition.

The new SNES Classic Edition, a miniature version of the original console, comes with an HDMI cable to make it compatible with modern televisions. It also comes pre-loaded with a roster of 21 games, including Super Mario Kart, The Legend of Zelda: A Link to the Past, Donkey Kong Country, and Star Fox 2, an unreleased sequel to the 1993 original.

“While many people from around the world consider the Super NES to be one of the greatest video game systems ever made, many of our younger fans never had a chance to play it,” Doug Bowser, Nintendo's senior vice president of sales and marketing, said in a statement. “With the Super NES Classic Edition, new fans will be introduced to some of the best Nintendo games of all time, while longtime fans can relive some of their favorite retro classics with family and friends.”

The SNES Classic Edition will go on sale on September 29 and retail for $79.99. Nintendo reportedly only plans to manufacture the console “until the end of calendar year 2017,” which means that the competition to get your hands on one will likely be stiff, as anyone who tried to purchase an NES Classic last year will well remember.

In November 2016, Nintendo released a miniature version of its original NES system, which sold out pretty much instantly. After selling 2.3 million units, Nintendo discontinued the NES Classic in April. In a statement to Polygon, the company has pledged to “produce significantly more units of Super NES Classic Edition than we did of NES Classic Edition.”

Nintendo has not yet released information about where gamers will be able to buy the new console, but you may want to start planning to get in line soon.