CLOSE
Original image
Youtube

The Time Ronald Reagan Was Nearly Strangled By A Chimp

Original image
Youtube

The fact that actor-turned-president Ronald Reagan once co-starred with a chimpanzee in Bedtime for Bonzo (1951) provided him with a long-running source of embarrassment after his political career took off decades later. The movie was, according to Johnny Carson, “a favorite of old movie buffs and Democrats” while other critics went on to cite Reagan as “the first president in history to be out-acted by a chimp.” In his own words, “I fought a losing battle with a scene-stealer with a built-in edge: he was a chimpanzee!” Making the film was certainly not monkey business; in fact, one unfortunate run-in with its leading ape nearly cost Reagan his life.

Known professionally as Peggy, the trained chimp in question was actually a female playing a role designed for the opposite sex (this was disguised by a tuft of fur carefully situated between her legs). According to witnesses, the vivacious and curious Peggy had been coached to perform hundreds of actions on command, including weeping, snarling, and puckering up.

One day on the set, Peggy’s natural inquisitiveness got the better of her. Spying Reagan’s necktie, she grabbed it with both hands and began to pull. Startled, the actor tried to back away, but the harder he resisted, the harder she pulled, nearly suffocating our fortieth president in the process. Eventually, Reagan was able to break free of her grasp—but by then, he later recalled, the knot in his tie was “as small as my fingernail.” Far too tight to be untied by hand, the garment had to be cut off Reagan’s neck by a nearby crewmember.

To see Peggy (and Reagan) actually following the script, here’s a brief snippet from the film:

Original image
Sylke Rohrlach, Wikimedia Commons // CC BY-SA 2.0
arrow
Animals
These Strange Sea Spiders Breathe Through Their Legs
Original image
Sylke Rohrlach, Wikimedia Commons // CC BY-SA 2.0

We know that humans breathe through their lungs and fish breathe through their gills—but where exactly does that leave sea spiders?

Though they might appear to share much in common with land spiders, sea spiders are not actually arachnids. And, by extension, they don't circulate blood and oxygen the way you'd expect them to, either.

A new study from Current Biology found that these leggy sea dwellers (marine arthropods of the class Pycnogonida) use their external skeleton to take in oxygen. Or, more specifically: They use their legs. The sea spider contracts its legs—which contain its guts—to pump oxygen through its body.

Somehow, these sea spiders hardly take the cake for Strangest Spider Alive (especially because they're not actually spiders); check out, for instance, our round-up of the 10 strangest spiders, and watch the video from National Geographic below:

arrow
science
Scientists Study the Starling Invasion Unleashed on America by a Shakespeare Fan

On a warm spring day, the lawn outside the American Museum of Natural History in Manhattan gleams with European starlings. Their iridescent feathers reflect shades of green and indigo—colors that fade to dowdy brown in both sexes after the breeding season. Over the past year, high school students from different parts of the city came to this patch of grass for inspiration. "There are two trees at the corner I always tell them to look at," Julia Zichello, senior manager at the Sackler Educational Lab at the AMNH, recalls to Mental Floss. "There are holes in the trees where the starlings live, so I was always telling them to keep an eye out."

Zichello is one of several scientists leading the museum's Science Research Mentoring Program, or SRMP. After completing a year of after-school science classes at the AMNH, New York City high school students can apply to join ongoing research projects being conducted at the institution. In a recent session, Zichello collaborated with four upperclassmen from local schools to continue her work on the genetic diversity of starlings.

Before researching birds, Zichello earned her Ph.D. in primate genetics and evolution. The two subjects are more alike than they seem: Like humans, starlings in North America can be traced back to a small parent population that exploded in a relatively short amount of time. From a starting population of just 100 birds in New York City, starlings have grown into a 200-million strong flock found across North America.

Dr. Julia Zichello
Dr. Julia Zichello
©AMNH

The story of New York City's starlings began in March 1890. Central Park was just a few decades old, and the city was looking for ways to beautify it. Pharmaceutical manufacturer Eugene Schieffelin came up with the idea of filling the park with every bird mentioned in the works of William Shakespeare. This was long before naturalists coined the phrase "invasive species" to describe the plants and animals introduced to foreign ecosystems (usually by humans) where their presence often had disastrous consequences. Non-native species were viewed as a natural resource that could boost the aesthetic and cultural value of whatever new place they called home. There was even an entire organization called the American Acclimatization Society that was dedicated to shipping European flora and fauna to the New World. Schieffelin was an active member.

He chose the starling as the first bird to release in the city. It's easy to miss its literary appearance: The Bard referenced it exactly once in all his writings. In the first act of Henry IV: Part One, the King forbids his knight Hotspur from mentioning the name of Hotspur's imprisoned brother Mortimer to him. The knight schemes his way around this, saying, "I'll have a starling shall be taught to speak nothing but 'Mortimer,' and give it him to keep his anger still in motion."

Nearly three centuries after those words were first published, Schieffelin lugged 60 imported starlings to Central Park and freed them from their cages. The following year, he let loose a second of batch of 40 birds to support the fledgling population.

It wasn't immediately clear if the species would adapt to its new environment. Not every bird transplanted from Europe did: The skylark, the song thrush, and the bullfinch had all been subjects of American integration efforts that failed to take off. The Acclimatization Society had even attempted to foster a starling population in the States 15 years prior to Schieffelin's project with no luck.

Then, shortly after the second flock was released, the first sign of hope appeared. A nesting pair was spotted, not in the park the birds were meant to occupy, but across the street in the eaves of the American Museum of Natural History.

Schieffelin never got around to introducing more of Shakespeare's birds to Central Park, but the sole species in his experiment thrived. His legacy has since spread beyond Manhattan and into every corner of the continent.

The 200 million descendants of those first 100 starlings are what Zichello and her students made the focus of their research. Over the 2016-2017 school year, the group met for two hours twice a week at the same museum where that first nest was discovered. A quick stroll around the building reveals that many of Schieffelin's birds didn't travel far. But those that ventured off the island eventually spawned populations as far north as Alaska and as far south as Mexico. By sampling genetic data from starlings collected around the United States, the researchers hoped to identify how birds from various regions differed from their parent population in New York, if they differed at all.

Four student researchers at the American Museum of Natural History
Valerie Tam, KaiXin Chen, Angela Lobel and Jade Thompson (pictured left to right)
(©AMNH/R. Mickens)

There are two main reasons that North American starlings are appealing study subjects. The first has to do with the founder effect. This occurs when a small group of individual specimens breaks off from the greater population, resulting in a loss of genetic diversity. Because the group of imported American starlings ballooned to such great numbers in a short amount of time, it would make sense for the genetic variation to remain low. That's what Zichello's team set out to investigate. "In my mind, it feels like a little accidental evolutionary experiment," she says.

The second reason is their impact as an invasive species. Like many animals thrown into environments where they don't belong, starlings have become a nuisance. They compete with native birds for resources, tear through farmers' crops, and spread disease through droppings. What's most concerning is the threat they pose to aircraft. In 1960, a plane flying from Boston sucked a thick flock of starlings called a murmuration into three of its four engines. The resulting crash killed 62 people and remains the deadliest bird-related plane accident to date.

Today airports cull starlings on the premises to avoid similar tragedies. Most of the birds are disposed of, but some specimens are sent to institutions like AMNH. Whenever a delivery of dead birds arrived, it was the students' responsibility to prep them for DNA analysis. "Some of them were injured, and some of their skulls were damaged," Valerie Tam, a senior at NEST+m High School in Manhattan, tells Mental Floss. "Some were shot, so we had to sew their insides back in."

Before enrolling in SRMP, most of the students' experiences with science were limited to their high school classrooms. At the museum they had the chance to see the subject's dirty side. "It's really different from what I learned from textbooks. Usually books only show you the theory and the conclusion, but this project made me experience going through the process," says Kai Chen, also a senior at NEST+m.

After analyzing data from specimens in the lab, an online database, and the research of previous SRMP students, the group's hypothesis was proven correct: Starlings in North America do lack the genetic diversity of their European cousins. With so little time to adapt to their new surroundings, the variation between two starlings living on opposite coasts could be less than that between the two birds that shared a nest at the Natural History Museum 130 years ago.

Students label samples in the lab.
Valerie Tam, Jade Thompson, KaiXin Chen and Angela Lobel (pictured left to right) label samples with Dr. Julia Zichello.
©AMNH/C. Chesek

Seeing how one species responds to bottlenecking and rapid expansion can provide important insight into species facing similar conditions. "There are other populations that are the same way, so I think this data can help [scientists],” Art and Design High School senior Jade Thompson says. But the students didn't need to think too broadly to understand why the animal was worth studying. "They do affect cities when they're searching for shelter," Academy of American Studies junior Angela Lobel says. “They can dig into buildings and damage them, so they're relevant to our actual homes as well.”

The four students presented their findings at the museum's student research colloquium—an annual event where participants across SRMP are invited to share their work from the year. Following their graduation from the program, the four young women will either be returning to high school or attending college for the first time.

Zichello, meanwhile, will continue where she left off with a new batch of students in the fall. Next season she hopes to expand her scope by analyzing older specimens in the museum's collections and obtaining bird DNA samples from England, the country the New York City starlings came from. Though the direction of the research may shift, she wants the subject to remain the same. "I really want [students] to experience the whole organism—something that's living around them, not just DNA from a species in a far-away place." she says. "I want to give them the picture that evolution is happening all around us, even in urban environments that they may not expect."

SECTIONS

More from mental floss studios