Ancient Poop Contains First Evidence of Parasites Described by Hippocrates

Department Of Classics, University Of Cincinnati
Department Of Classics, University Of Cincinnati

The long-held mystery of Hippocrates and the parasitic worms has finally been solved, and it’s all thanks to a few samples of ancient poop.

Researchers don’t know much about the parasites that plagued the Greeks thousands of years ago, and what they do know is largely from the Hippocratic Corpus, the medical texts that the father of medicine and his students put together between the 4th and 3rd centuries BCE. Modern historians have spent years trying to figure out which diseases and parasites Hippocrates and his followers were referring to in their writing, relying solely on their descriptions to guess at what ailments the ancient Greeks might have suffered from. Now, they finally have concrete evidence of the existence of some of the intestinal worms Hippocrates mentioned, Helmins strongyle and Ascaris.

As part of a study in the Journal of Archaeological Science: Reports, an international group of researchers analyzed the ancient remains of feces in 25 prehistoric burials on the Greek island of Kea to determine what parasites the people were carrying when they died. Using microscopes, they looked at the soil (formed by the decomposed poop) found on the pelvic bones of skeletons dating back to the Neolithic, Bronze, and Roman periods.

A roundworm egg under the microscope
A roundworm egg
Elsevier

Around 16 percent of the burials they studied contained evidence of parasites. In these ancient fecal samples, they found the eggs of two different parasitic species. In the soil taken from the skeletons dating back to the Neolithic period, they found whipworm eggs, and in the soil taken from the Bronze Age skeletons, roundworm.

With this information, researchers deduced that what Hippocrates called the Helmins strongyle worm was probably what modern doctors would call roundworm. The Ascaris worm probably referred to two different parasites, they conclude, known today as pinworm (which was not found in this analysis) and whipworm (pictured below).

Whipworm under a microscope
A whipworm egg
Elsevier

Though historians already hypothesized that Hippocrates's patients on Kea had roundworm, the Ascaris finding comes as a particular surprise. Previous research based solely on Hippocrates’s writing rather than physical evidence suggested that what he called Ascaris was probably a pinworm, and another worm he mentioned, Helmins plateia, was probably a tapeworm. But the current research didn’t turn up any evidence of either of those two worms. Instead of pinworm eggs, the researchers found whipworm, another worm that’s similarly small and round. (Pinworms may very well have existed in ancient Greece, the researchers caution, since evidence of their fragile eggs could easily have been lost to time.) The soil analysis has already changed what we know about the intestinal woes of the ancient Greeks of Kea.

More importantly, this study provides the earliest evidence of ancient Greece’s parasitic worm population, proving yet again that ancient poop is one of the world’s most important scientific resources.

Advanced CT Scans Reveal Blood Vessels and Skin Layers in a Mummy's Hand

Jenny Romell, et al./Radiology
Jenny Romell, et al./Radiology

Mummies hold some intriguing secrets to their pasts, like the food they ate and the diseases they had when they were alive. Now scientists are using a tool originally designed for medicine to get an even deeper look at the clues mummified bodies carry with them into the present day, Gizmodo reports.

In a proof-of-concept study published in the journal Radiology, researchers from the KTH Royal Institute of Technology in Sweden detail how a new-and-improved CT scanning technique can be used to visualize the interior of mummies on a microscopic level. By creating detailed X-ray images, CT scans allow doctors to see inside their patients without invasive surgery. Archaeologists have been using this technology to study delicate ancient artifacts for years, but the level of detail that can be achieved this way—especially when it comes to looking at interior soft tissue—is limited.

The upgraded version of the tech, called phase-contrast CT scanning, measures the phase shift, or the change in the position of a light wave, that occurs when X-rays pass through solid objects. The images generated this way have a higher contrast level than conventional X-rays, which means they capture more detail.

Cross-section of mummy hand.
Jenny Romell, et al./Radiology

Doctors have been using this 10-year-old technology to examine soft tissues like organs and veins in living patients, but it hadn't been used on a mummy until recently. Working with a mummified human right hand dating back to 400 BCE in Egypt, which they borrowed from the Museum of Mediterranean and Near Eastern Antiquities in Stockholm, the researchers fired up a phase-contrast CT scanner. It produced images with a resolution of 6 to 9 microns, giving a clear picture of the different layers of skin, individual cells in the connective tissue, and the blood vessels in the nail bed—all without damaging the artifact. Previously, researchers looking to study these same tissues in mummies would have needed to use a scalpel.

As Ars Technica reports, a phase-contrast CT scanner is similar in cost to the conventional machine. The study authors hope their work will lead to phase-contrast CT scanning becoming just as common in archaeology as regular CT scanning, potentially creating new research opportunities in mummies that will be discovered in the future and even in artifacts that have already been examined.

[h/t Gizmodo]

A 2.63-Carat Diamond Was Unearthed by a Grandmother at an Arkansas State Park

iStock
iStock

Visitors to the Crater of Diamonds Park in Murfreesboro, Arkansas clearly have an objective in mind: Excavate one of the diamonds lurking on or beneath the park's soil, the onetime site of a volcanic crater. If they do, it's theirs to keep.

Earlier this month, a 71-year-old grandmother from Colorado made the biggest discovery on park grounds of 2018: a 2.63-carat ice white diamond. And she did it in about 10 minutes.

The retiree, who asked media outlets not to identify her by name, visited Crater of Diamonds with her husband, son, and grandchildren. After briefly scraping away dirt, she saw the gem on the surface. The diamond was so large and clear—roughly the size of a pinto bean—that she assumed it was just a piece of glass. Further inspection by her family and park personnel revealed it was a diamond.

Park officials told press that employees frequently till the soil, which can loosen the gems and allow them to catch the reflection of the sun, making them easier to spot. Roughly 33,000 diamonds have been found by visitors since the park opened in 1972.

It's hard to know the exact value of the diamond. While there is a certain fluctuating value assigned to a carat, appraisers also look at three other "Cs": clarity, color, and cut. A two-carat diamond is often more than double the price of a one-carat diamond because the larger gems are more rare. But tourists have profited from their finds: In 2015, a visitor retrieved a 8.51-carat white diamond that was cut down to 4.6 carats by a jeweler and valued by the American Gem Society at $500,000.

[h/t WGN TV]

SECTIONS

arrow
LIVE SMARTER