NM Museum of Natural History & Science
NM Museum of Natural History & Science

Scientists Find a 245-Million-Year-Old Horseshoe Crab Fossil That Resembles Darth Vader

NM Museum of Natural History & Science
NM Museum of Natural History & Science

Horseshoe crabs have scuttled through Earth’s shallow ocean waters for hundreds of millions of years, but scientists recently discovered the fossil of one that looks like it’s from a galaxy far, far away. As Newsweek reports, the 245-million-year-old creature’s shell is shaped like Darth Vader’s helmet, which prompted researchers to name the prehistoric critter Vaderlimulus tricki. (Tricki pays homage to Trick Runions, the man who found the fossil.)

Paleontologists from the New Mexico Museum of Natural History and Science and the University of Colorado described the Vader horseshoe crab in a new report published in the German journal Neues Jahrbuch für Geologie und Paläontologie. Discovered in Idaho, Vaderlimulus tricki lived during the late Triassic era and belonged to a now-extinct family called Austrolimulidae. During its lifetime, it inhabited the western coast of the supercontinent Pangea.

Vaderlimulus tricki's unique shell can be chalked up to evolution, scientists explain in a news release, as the creatures were “expanding their ecological range from marine into freshwater settings during the Triassic and often exhibit body modifications that provide them with a bizarre appearance by modern standards."

Horseshoe crabs have survived at least 470 million years on Earth, and are often referred to as “living fossils.” But individual species died out over the millennia (only four are currently alive today), and fossils of horseshoe crabs are few and far between. When new ones are discovered, they often belong to a species that was previously unknown to science. Vaderlimulus tricki, in particular, is the first horseshoe crab from the Triassic period to have been found in North America.

[h/t Newsweek]

nextArticle.image_alt|e
MARS Bioimaging
The World's First Full-Color 3D X-Rays Have Arrived
MARS Bioimaging
MARS Bioimaging

The days of drab black-and-white, 2D X-rays may finally be over. Now, if you want to see what your broken ankle looks like in all its full-color, 3D glory, you can do so thanks to new body-scanning technology. The machine, spotted by BGR, comes courtesy of New Zealand-based manufacturer MARS Bioimaging.

It’s called the MARS large bore spectral scanner, and it uses spectral molecular imaging (SMI) to produce images that are fully colorized and in 3D. While visually appealing, the technology isn’t just about aesthetics—it could help doctors identify issues more accurately and provide better care.

Its pixel detectors, called “Medipix” chips, allow the machine to identify colors and distinguish between materials that look the same on regular CT scans, like calcium, iodine, and gold, Buzzfeed reports. Bone, fat, and water are also differentiated by color, and it can detect details as small as a strand of hair.

“It gives you a lot more information, and that’s very useful for medical imaging. It enables you to do a lot of diagnosis you can’t do otherwise,” Phil Butler, the founder/CEO of MARS Bioimaging and a physicist at the University of Canterbury, says in a video. “When you [have] a black-and-white camera photographing a tree with its leaves, you can’t tell whether the leaves are healthy or not. But if you’ve got a color camera, you can see whether they’re healthy leaves or diseased.”

The images are even more impressive in motion. This rotating image of an ankle shows "lipid-like" materials (like cartilage and skin) in beige, and soft tissue and muscle in red.

The technology took roughly a decade to develop. However, MARS is still working on scaling up production, so it may be some time before the machine is available commercially.

[h/t BGR]

nextArticle.image_alt|e
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017
Look Closely—Every Point of Light in This Image Is a Galaxy
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017

Even if you stare closely at this seemingly grainy image, you might not be able to tell there’s anything to it besides visual noise. But it's not static—it's a sliver of the distant universe, and every little pinprick of light is a galaxy.

As Gizmodo reports, the image was produced by the European Space Agency’s Herschel Space Observatory, a space-based infrared telescope that was launched into orbit in 2009 and was decommissioned in 2013. Created by Herschel’s Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer (PACS), it looks out from our galaxy toward the North Galactic Pole, a point that lies perpendicular to the Milky Way's spiral near the constellation Coma Berenices.

A close-up of a view of distant galaxies taken by the Herschel Space Observatory
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017

Each point of light comes from the heat of dust grains between different stars in a galaxy. These areas of dust gave off this radiation billions of years before reaching Herschel. Around 1000 of those pins of light belong to galaxies in the Coma Cluster (named for Coma Berenices), one of the densest clusters of galaxies in the known universe.

The longer you look at it, the smaller you’ll feel.

[h/t Gizmodo]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios