CLOSE
Two neutron stars collide.
Two neutron stars collide.

Neutron Star Collision Sheds Light on the Strange Matter That Weighs a Billion Tons Per Teaspoon

Two neutron stars collide.
Two neutron stars collide.

Neutron stars are among the many mysteries of the universe scientists are working to unravel. The celestial bodies are incredibly dense, and their dramatic deaths are one of the main sources of the universe’s gold. But beyond that, not much is known about neutron stars, not even their size or what they’re made of. A new stellar collision reported earlier this year may shed light on the physics of these unusual objects.

As Science News reports, the collision of two neutron stars—the remaining cores of massive stars that have collapsed—were observed via light from gravitational waves. When the two small stars crossed paths, they merged to create one large object. The new star collapsed shortly after it formed, but exactly how long it took to perish reveals keys details of its size and makeup.

One thing scientists know about neutron stars is that they’re really, really dense. When stars become too big to support their own mass, they collapse, compressing their electrons and protons together into neutrons. The resulting neutron star fits all that matter into a tight space—scientists estimate that one teaspoon of the stuff inside a neutron star would weigh a billion tons.

This type of matter is impossible to recreate and study on Earth, but scientists have come up with a few theories as to its specific properties. One is that neutron stars are soft and yielding like stellar Play-Doh. Another school of thought posits that the stars are rigid and equipped to stand up to extreme pressure.

According to simulations, a soft neutron star would take less time to collapse than a hard star because they’re smaller. During the recently recorded event, astronomers observed a brief flash of light between the neutron stars’ collision and collapse. This indicates that a new spinning star, held together by the speed of its rotation, existed for a few milliseconds rather than collapsing immediately and vanishing into a black hole. This supports the hard neutron star theory.

Armed with a clearer idea of the star’s composition, scientists can now put constraints on their size range. One group of researchers pegged the smallest possible size for a neutron star with 60 percent more mass than our sun at 13.3 miles across. At the other end of the spectrum, scientists are determining that the biggest neutron stars become smaller rather than larger. In the collision, a larger star would have survived hours or potentially days, supported by its own heft, before collapsing. Its short existence suggests it wasn’t so huge.

Astronomers now know more about neutron stars than ever before, but their mysterious nature is still far from being fully understood. The matter at their core, whether free-floating quarks or subatomic particles made from heavier quarks, could change all of the equations that have been written up to this point. Astronomers will continue to search the skies for clues that demystify the strange objects.

[h/t Science News]

nextArticle.image_alt|e
Two neutron stars collide.
arrow
Space
The Fascinating Device Astronauts Use to Weigh Themselves in Space

Most every scale on Earth, from the kind bakers use to measure ingredients to those doctors use to weigh patients, depends on gravity to function. Weight, after all, is just the mass of an object times the acceleration of gravity that’s pushing it toward Earth. That means astronauts have to use unconventional tools when recording changes to their bodies in space, as SciShow explains in the video below.

While weight as we know it technically doesn’t exist in zero-gravity conditions, mass does. Living in space can have drastic effects on a person’s body, and measuring mass is one way to keep track of these changes.

In place of a scale, NASA astronauts use something called a Space Linear Acceleration Mass Measurement Device (SLAMMD) to “weigh” themselves. Once they mount the pogo stick-like contraption it moves them a meter using a built-in spring. Heavier passengers take longer to drag, while a SLAMMD with no passenger at all takes the least time to move. Using the amount of time it takes to cover a meter, the machine can calculate the mass of the person riding it.

Measuring weight isn’t the only everyday activity that’s complicated in space. Astronauts have been forced to develop clever ways to brush their teeth, clip their nails, and even sleep without gravity.

[h/t SciShow]

nextArticle.image_alt|e
Two neutron stars collide.
iStock
arrow
fun
Watch Astronauts Assemble Pizza in Space
iStock
iStock

Most everyone enjoys a good pizza party: Even astronauts living aboard the International Space Station.

As this video from NASA shows, assembling pizza in zero gravity is not only possible, it also has delicious results. The inspiration for the pizza feast came from Paolo Nespoli, an Italian astronaut who was craving one of his home country’s national dishes while working on the ISS. NASA’s program manager for the space station, Kirk Shireman, sympathized with his colleague and ordered pizzas to be delivered to the station.

NASA took a little longer responding to the request than your typical corner pizzeria might. The pizzas were delivered via the Orbital ATK capsule, and once they arrived, the ingredients had to be assembled by hand. The components didn’t differ too much from regular pizzas on Earth: Flatbread, tomato sauce, and cheese served as the base, and pepperoni, pesto, olives, and anchovy paste made up the toppings. Before heating them up, the astronauts had some fun with their creations, twirling them around like "flying saucers of the edible kind,” according to astronaut Randy Bresnik.

In case the pizza party wasn’t already a success, it also coincided with movie night on the International Space Station.

[h/t KHQ Q6]

SECTIONS

arrow
LIVE SMARTER