10 Facts About the Dwarf Planet Makemake

Within the Kuiper Belt—that ring of ices and volatile material beyond the orbit of Neptune—are all but one of the known dwarf planets in the solar system. Pluto is the largest of that class of planet, with Eris a close second. Next on that list is the plucky Makemake, a relatively reflective, distant, and dynamic world. From a distance of 4.26 billion miles, much about Makemake remains a mystery, though scientists are chipping away at the unknowns. Here are a few things they know—but you might not—about Makemake.

1. MAKEMAKE IS ONLY THREE TIMES AS LONG AS THE GRAND CANYON.

Makemake's orbit is a half-billion miles farther from the Sun than Pluto's. One day on the distant dwarf lasts nearly as long as ours does—22.5 hours—but the small world is in no rush to circle our star: One Makemakean year is 305 Earth years long. With a diameter of about 880 miles, the dwarf planet is about two-thirds the size of Pluto—and about three times the size of the 277-mile-long Grand Canyon—making it the 25th largest object in the solar system. That might not seem very impressive until you consider that there are hundreds of thousands of objects orbiting the Sun.

2. IT'S IMPRESSIVELY BRIGHT.

Despite being smaller than Pluto, Makemake is the second brightest object in the Kuiper Belt. Its reflective surface is a result of an abundance of methane and ethane ice present there; half-inch pellets of frozen methane may riddle its frigid surface. It's likely a reddish-brown hue, though its distance makes it hard to tell for sure.

3. IT WAS CALLED "EASTERBUNNY" …

Mike Brown of Caltech discovered Makemake a few days after Easter in 2005. (Brown also discovered the dwarf planets Eris and Haumea.) Before it received its formal name, Brown's team called it "Easterbunny." To other astronomers, its provisional name was "2005 FY9."

4. … BEFORE IT WAS OFFICIALLY NAMED AFTER AN EASTER ISLAND GOD.

In 2008, Easterbunny/2005 FY9 was designated a dwarf planet by the International Astronomical Union (IAU). When deciding what name to submit to the IAU, the proximal holiday led Brown to its namesake island (itself first visited by a European around Easter 1722), which led Brown to its people and their religious heritage. Makemake is the creator god of the Rapa Nui people of Easter Island.

5. MAKEMAKE IS PARTIALLY TO BLAME FOR PLUTO'S DEMOTION TO DWARF PLANET.

The discovery of Makemake and, just a few months before, Eris—which is larger than Pluto—forced astronomers to reconsider what, exactly, makes a planet a planet. A planet has to orbit the Sun, have enough mass that its gravity forces it into a round shape, and clear its immediate space neighborhood of other objects. Eris, Makemake, Pluto, and Haumea fail to meet all three criteria in one way or another. (Pluto's downfall: It doesn't clear its neighborhood.) After fierce debate among astronomers around the world, the IAU created the new category of "dwarf planet" for these objects—including Pluto. (Thanks, Makemake.)

6. MAKEMAKE'S SURFACE IS VOLATILE.

Makemake is no mere round rock in space. In many ways, it's a sibling of Pluto. Its surface, for example, is dominated by methane, a hyper-volatile compound that is also found on Pluto's surface. ("Volatile" means it reacts to changes in temperature.) "The processes on Pluto are driven by the movement of volatiles around the surface as temperatures change," says Alex Parker, a senior research scientist at the Southwest Research Institute in Boulder, Colorado. "If a world has a volatile-dominated surface—like Makemake does—it probably has dynamic processes on it similar to Pluto."

7. ITS MOON WAS ONLY RECENTLY DISCOVERED.

family of planets
JHU-APL

In the illustration above, Makemake has no moon. That's because it was only discovered in 2016 by Parker [PDF], who spotted it in data collected by the Hubble Space Telescope. "It was actually a very obvious satellite," he tells Mental Floss. "I didn't have to do too much digging into the data to get it to pop out; it just sort of stood out clear as day."

He continues: "As soon as I found it, I was also crestfallen, because I was sure other people who had done the preliminary analysis of the data would have almost certainly seen it—and that I would have been late to the party. My first question to the principal investigator of the program was, 'Hey, have you seen the moon in the Makemake data?' And I was sure the answer was going to be, 'Yes.' But it was, 'There's a moon in the Makemake data?' It was super exciting realizing that thing I was sure other people had spotted hadn't been and that I was the first to see it."

The moon's current official designation is S/2015 (136472), and it's nicknamed MK 2. More than 1300 times fainter than Makemake, it's estimated to be a mere 100 miles wide.

8. ASTRONOMERS ARE TRYING TO MAP MAKEMAKE WITH ITS MOON.

Makemake's moon is more than a celestial feature; it's a tool for scientists. As the 105-mile-wide object (nearly twice as long as the Panama Canal) and its planet pass in front of one another, astronomers can use the changes in brightness to map the Makemakean surface. "Just like we had preliminary maps of Pluto before we got there, we can actually use the moon as it passes in front of Makemake as a tool to map it," says Parker.

Specifically, as one object crosses the other, parts of the obscured object can be isolated. Astronomers can then derive the brightness of just the isolated part of the body (rather the whole body at once). Darker areas and lighter areas can then be mapped to the object, and models can help determine whether scientists are seeing terrain features, for example. They're not going to be naming mountains with this technique, but they can find interesting areas worth further study and modeling.

"There are many ways you can think of Makemake as a sort of Pluto prior to the New Horizons exploration. We are just starting to get glimpses of what it looks like," Parker says. "It could be this dynamic and active world, and I think that's exciting."

9. MUCH OF MAKEMAKE REMAINS MYSTERIOUS.

Scientists aren't sure how Makemake's day-night cycle influences its landforms and surface processes (which include things like geology or interactions between the atmosphere—if it has one—and the surface). The history and origin of its moon are also unknown, and raise other interesting questions for scientists. Theorists who work on planetary formation, and astronomers who study the motions of celestial objects, are revising their models to account for why moons are a defining feature for dwarf planets—including the weird ones—when half of the terrestrial planets in the solar system (Mercury and Venus) lack moons.

"Why are moons so ubiquitous among dwarf planets in the Kuiper Belt? At this point, every one of the largest objects in the Kuiper Belt [except one] has at least one moon," Parker says. "Some have two. Some have five. And so if you come up with a process for growing these planets [like accretion] ... one of the end states of that process needs to be that they all end up with at least one moon."

10. THERE ARE NO PLANS TO VISIT MAKEMAKE … YET.

No missions have yet been launched to Makemake, though the New Horizons spacecraft, having completed its reconnaissance of Pluto, has plunged deeper into the Kuiper Belt to study at least one other object there. Back on Earth, planetary scientists are considering frameworks for future Kuiper Belt missions. The development of new propulsion technologies by engineers will enable more science in single expeditions. In the longer term, orbiter missions will return to visited bodies and study them in finer detail. "Given how much variety there is in the Kuiper Belt," Parker says, "it's going to be a pretty exciting time as we shed light on these worlds."

10 Riveting Facts About Mars

Mars's dust storms can be global. In these images taken a month apart in 2001, the dust storm near the southern polar ice cap (left) soon enveloped the entire planet (right).
Mars's dust storms can be global. In these images taken a month apart in 2001, the dust storm near the southern polar ice cap (left) soon enveloped the entire planet (right).
NASA/JPL-CALTECH/MSSS

Few celestial objects have fascinated humankind throughout history more than the Red Planet. For over a century, we've longed to know more about Mars and the beings that we speculated lived there. When NASA dispelled the notion of creatures scurrying along the rusty plains, it raised a more tantalizing prospect: that we might one day be the creatures that call Mars home.

Mental Floss spoke to Kirby Runyon, a researcher at the Johns Hopkins University Applied Physics Laboratory, and Tanya Harrison, the director of research for Arizona State University's NewSpace Initiative, to learn more about the place your kids might live one day.

1. A MARTIAN YEAR LASTS JUST UNDER TWO EARTH YEARS.

It takes 687 Earth days for the Red Planet make its way around the Sun. A Mars day—called a sol—lasts 24.6 hours, which would be a nuisance for the circadian rhythms of astronauts (but not as bad as a day on Venus, which lasts 5832 hours).

2. IT'S NOT AS HOT AS IT MIGHT LOOK.

Mars looks desert-hot—New Mexico with hazy skies, red because of its iron oxide soil—but is actually very cold, with a blistering hot sol being 70°F, and a cold sol a brisk -225°F. Its dust storms can be huge; in 2018, one storm grew so large that it encompassed the entire planet for more than a month. (You can see a similarly huge dust storm in the image above.)

3. MARS IS MUCH SMALLER THAN EARTH ...

Compared to Earth, Mars is a tiny Styrofoam ball, with a diameter just over half of ours and one-tenth of our mass. Its gravity will be an absolute nightmare for future colonists, at .38 that of their native planet. (That means a person weighing 100 pounds here would weigh just 38 pounds on Mars.)

4. ... AND ITS ATMOSPHERE IS MOSTLY CARBON DIOXIDE.

You won't want to get a breath of fresh air on Mars unless you're trying to suffocate: Its atmosphere is 95.32 percent carbon dioxide, with a little nitrogen and argon thrown in. (Earth's atmosphere, by contrast, is mostly nitrogen and oxygen.) When you do try to take that single, hopeless breath, the tears on your eyeballs, saliva in your mouth, and water in your lungs will immediately evaporate. You won't die right away, but you'll probably want to.

5. IT HAS TWO MOONS, BOTH WITH BETTER NAMES THAN OURS.

They're called Phobos and Deimos, which translate to Fear and Dread, respectively. They're shaped like potatoes and don't exactly fill the evening sky: Standing on the Martian surface, Phobos would appear to be about one-third the size of Earth's moon; Deimos would look like a bright star.

Future human Martians will have to enjoy Phobos while they can. The tidal forces of Mars are tearing Phobos apart; in 50 million years, the big potato will disintegrate.

In the meantime, Phobos is one of the stepping stones NASA plans to take on its journey to Mars. No part of human exploration of the Red Planet is easy, and before we land on Mars (and then have to figure out how to launch back into space and somehow get back to Earth), it's vastly easier to land on Phobos, do a little reconnaissance, and then take off and return home. As a bonus, on the journey to Phobos [PDF], astronauts can bring along hardware necessary for eventual Martian settlement, making the ride a lot easier for the next astronauts.

6. MARS IS HOME TO THE TALLEST MOUNTAIN IN THE SOLAR SYSTEM.

The tallest mountain on Earth, Mount Everest, is 29,029 feet tall. Olympus Mons on Mars is over 72,000 feet in height, making it the tallest mountain by far on any planet in the solar system.

Olympus Mons isn't the only extraordinary Mars feature: Mountaineers might also want to check out NASA's trail map for hiking the famous Face on Mars. If canyons are more your speed, you'll want to visit Valles Marineris. It is the size of North America and, at its bottom, four miles deep. (In the solar system, only Earth's Atlantic Ocean is deeper.) Once Earth's ice caps finish melting, you can always visit the ones on Mars. (If you have a telescope, you can easily see them; they are the planet's most distinctive features visible from your backyard.)

7. THE IDEA OF MARTIANS GOES BACK OVER A CENTURY.

That's partially because of popular fiction (War of the Worlds, the 1897 novel by H.G. Wells, sees a Martian invasion force invade England) and partially because of Percival Lowell, the famed astronomer who wrote prolifically on the canals he thought he was observing through his telescope, and why they might be necessary for the survival of the Martian people. (Mars was drying up.)

Though it's easy to dismiss such conclusions today, at the time Lowell not only popularized space science like few others, but left behind the Lowell Observatory in Flagstaff, Arizona—one of the oldest observatories in America and the place where Clyde Tombaugh discovered Pluto.

8. IF THERE ARE MARTIANS, THEY ARE MICROBES.

Today, scientists work tirelessly to unlock the complex geologic history of Mars, to determine whether life exists there today, or did long ago. "We think that Mars was most globally conducive to life around 3.5 to 3.8 billion years ago," Runyon tells Mental Floss. "In the Mars geologic history, that's the end of the Noachian and toward the beginning of the Hesperian epochs." There may once have been a hemispheric ocean on Mars. Later, the world might have alternated between being wet and dry, with an ocean giving way to massive crater lakes. Where there's water, there's a good chance of life.

"If we found life on Mars—either extinct or current—that's really interesting," says Runyon, "but more interesting than that, is whether this life arose independently on Mars, separate from Earth." It is conceivable that meteorite impacts on Earth blasted life-bearing rocks into space and eventually to the Martian surface: "A second life emergence on Mars is not just a geological question. It's a biogeochemical question. We know that Mars is habitable, but we haven't answered the question of whether it had, or has, life."

9. NASA SPENDS A LOT OF TIME OUT THERE.

Mars hasn't hurt for missions in recent years, though scientists now warn of an exploration desert beyond 2020. But that doesn't mean we humans don't have eyes on the planet. Presently in orbit around the planet are the Mars Reconnaissance Orbiter, which images and scans the planet; MAVEN, which studies its atmosphere; Mars Express, the European Space Agency's first Mars mission; MOM, the first Mars mission by the Indian Space Research Organization; the ESA's ExoMars Trace Gas Orbiter, which is searching for methane in the Martian atmosphere; and Odyssey, which studies Mars for water and ice signatures, and acts as a communications relay for vehicles on the ground.

Rolling around on the Martian surface are Curiosity and Opportunity—NASA missions both—which study Martian geology. Though the Russians and Europeans have tried mightily to do so, NASA is the only space agency to successfully land spacecraft on the Martian surface (seven times).

In November 2018, the InSight mission will land on Mars, where it will study the planet's interior. In 2020, NASA will land the Mars 2020 rover; where Curiosity studies Mars for signs of habitability, Mars 2020 will look for inhabitants.

"It is going to collect samples that will hopefully be brought back to Earth," says Runyon. "The three landing sites selected for Mars 2020 are Northeast Syrtis, Jezero Crater, and Columbia Hills within Gusev Crater, which is where the dead rover Spirit is currently sitting. Each of these sites is a hydrothermal environment dating from the Noachian-Hesperian boundary. These are some of the most perfect places to look for past signs of Martian life, and can help answer the question of whether life had a second genesis on Mars."

10. MARS IS CHANGING, BUT NOBODY KNOWS WHY.

"Most people don't realize how active Mars is," Harrison tells Mental Floss. "Other planets aren't just these dead worlds that are frozen in time outside of our own. There are actually things happening there right now." Imagery from the HiRISE and Context Camera instruments on the Mars Reconnaissance Orbiter have revealed such events as avalanches, sand dune erosion [PDF], and recurring slope lineae (flowing Martian saltwater).

Things are moving, but it's not always clear why. "There's a lot of material that has been eroded away," says Harrison. "We have entire provinces of the planet that look like they've been completely buried and then exhumed. And that's a lot of material. The big question is, where did it all go? And what process eroded it all away?" Curiosity might help answer the question, but to really understand the processes and history of the fourth rock from the Sun, we're going to need to send geologists in spacesuits. "You can't replace human intuition with a rover," Harrison says. "Looking at a picture on your computer is not the same as standing there and looking around at the context, stratigraphic columns, being able to pick up the rocks and manipulate them, take a hammer to things. So once humans land on the surface, it'll be kind of like the difference between what we knew about Mars from Viking and Mars Global Surveyor and then the revolution between Mars Global Surveyor and Mars Reconnaissance Orbiter. Our view of what we think happened on Mars is going to completely change, and we'll find out that a lot of what we thought we knew was wrong."

A version of this story ran in 2017.

See What Hurricane Florence Looks Like From Space

NASA via Getty Images
NASA via Getty Images

As Hurricane Florence continues to creep its way toward the Carolinas, it’s repeatedly being described as both "the storm of the century” and "the storm of a lifetime” for parts of the coastlines of North and South Carolina. While that may sound like hyperbole to some, Alexander Gerst—an astronaut with the European Space Agency—took to Twitter to prove otherwise with a few amazing photos, and issued a warning to “Watch out, America!”

According to the National Weather Service, “Hurricane Florence will be approaching the Carolina shores as the day progresses on Thursday. Although the exact timing, location, and eventual track of Florence isn't known, local impacts will likely begin in the afternoon hours and only worsen with time throughout the evening and overnight period.”

On Tuesday, Wilmington, North Carolina's National Weather Service took the warning even one step further, writing: "This will likely be the storm of a lifetime for portions of the Carolina coast, and that's saying a lot given the impacts we've seen from Hurricanes Diana, Hugo, Fran, Bonnie, Floyd, and Matthew. I can't emphasize enough the potential for unbelievable damage from wind, storm surge, and inland flooding with this storm.”

Gerst’s photos certainly drive that point home.

SECTIONS

arrow
LIVE SMARTER