CLOSE
Original image
Thinkstock

How to Build Your Own Canoe

Original image
Thinkstock

A canoe trip can be a fascinating way to get back in touch with nature. If you want to really tap back into your natural roots, what better way than by making your own boat? Dugout canoes made from hollowed logs have been around for thousands of years. Some of the earliest dugout canoes are 10,000 years old, making this one of the oldest boat-building methods in the world. Time for you to carry on that tradition.

1) Timber!

Find the right tree. Native Americans preferred pine or chestnut, but you can also use spruce, cottonwood, redwood, or cedar. The log should be free of rot and at least eight feet long, although if you want to go bigger, knock yourself out. Some Native American war canoes were almost 100 feet long.

2) Become an Adze Man

An adze, a hybrid of an axe and a hoe, is the handiest device in your boat-building toolbox. Use it to strip away the bark. When you’re done disrobing your log, flatten one side. This will be the bottom of the canoe.

3) Get Fired Up

Flip the log over and use your adze to hack a small trough down the middle, stuff it with kindling, and light it up. Let it burn for about four hours. The fire will soften the wood. If you prefer a different technique, the tribes of the Pacific Northwest would fill the trough with water and searing hot stones.

4) Scrape the Bottom of the Barrel

When the fire dies, scrape the charred tree with your adze. You should be able to dig down about one inch. If you want to be super authentic, scrape out the hull with shells instead. In the early 1600s, colonist William Wood observed Native Americans doing just that. He wrote, “Before they were acquainted with English tooles, they burned hollow, scraping them smooth with Clam-shells and Oystershels.”

5) Rinse and Repeat

Now, do it again. Burn and scrape your boat until you’ve formed a complete hull. As you burrow deeper, you’ll want to prevent some sections from crumbling in the flame. Wrap them with wet clay to control the burn—it’s excellent insulation.

6) Have Another Hobby

The more fires you light, the lighter the boat will be. But the longer you’ll have to wait, too. In 1643, theologian Roger Williams wrote that it took one Native American 12 days to make a canoe. So as you burn your boat, you’ll need to burn time. Might want to pack a book and some beer.

7) Get Polishing

When you’re finished with the controlled burns, rub down the rough edges with sandstone or siltstone. Polish and waterproof it with some pine tar and hot wood ash, or smear it with sap.

8) Ready, Set, Scuttle!

No matter how well-built your canoe is, it will be heavy. (Lewis and Clark used dugouts that literally weighed a ton). Once you dump your boat in the water, you won’t want to lug it out. So if you want to store it safely, follow the Native Americans’ lead and sink it. During the winter, they’d overload their canoes with rocks, sinking them to a shallow bottom. Called scuttling, the process would protect boats from the winter freeze. When spring returned, they’d remove the stones and the boat would bob back to the surface.

Want to be more interesting without chopping down a tree? Rent a normal canoe! Then celebrate your genius by cracking open a Dos Equis.

Original image
iStock // Ekaterina Minaeva
arrow
technology
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
iStock
arrow
Health
200 Health Experts Call for Ban on Two Antibacterial Chemicals
Original image
iStock

In September 2016, the U.S. Food and Drug Administration (FDA) issued a ban on antibacterial soap and body wash. But a large collective of scientists and medical professionals says the agency should have done more to stop the spread of harmful chemicals into our bodies and environment, most notably the antimicrobials triclosan and triclocarban. They published their recommendations in the journal Environmental Health Perspectives.

The 2016 report from the FDA concluded that 19 of the most commonly used antimicrobial ingredients are no more effective than ordinary soap and water, and forbade their use in soap and body wash.

"Customers may think added antimicrobials are a way to reduce infections, but in most products there is no evidence that they do," Ted Schettler, science director of the Science and Environmental Health Network, said in a statement.

Studies have shown that these chemicals may actually do more harm than good. They don't keep us from getting sick, but they can contribute to the development of antibiotic-resistant bacteria, also known as superbugs. Triclosan and triclocarban can also damage our hormones and immune systems.

And while they may no longer be appearing on our bathroom sinks or shower shelves, they're still all around us. They've leached into the environment from years of use. They're also still being added to a staggering array of consumer products, as companies create "antibacterial" clothing, toys, yoga mats, paint, food storage containers, electronics, doorknobs, and countertops.

The authors of the new consensus statement say it's time for that to stop.

"We must develop better alternatives and prevent unneeded exposures to antimicrobial chemicals," Rolf Haden of the University of Arizona said in the statement. Haden researches where mass-produced chemicals wind up in the environment.

The statement notes that many manufacturers have simply replaced the banned chemicals with others. "I was happy that the FDA finally acted to remove these chemicals from soaps," said Arlene Blum, executive director of the Green Science Policy Institute. "But I was dismayed to discover at my local drugstore that most products now contain substitutes that may be worse."

Blum, Haden, Schettler, and their colleagues "urge scientists, governments, chemical and product manufacturers, purchasing organizations, retailers, and consumers" to avoid antimicrobial chemicals outside of medical settings. "Where antimicrobials are necessary," they write, we should "use safer alternatives that are not persistent and pose no risk to humans or ecosystems."

They recommend that manufacturers label any products containing antimicrobial chemicals so that consumers can avoid them, and they call for further research into the impacts of these compounds on us and our planet.

SECTIONS
BIG QUESTIONS
arrow
BIG QUESTIONS
WEATHER WATCH
BE THE CHANGE
JOB SECRETS
QUIZZES
WORLD WAR 1
SMART SHOPPING
STONES, BONES, & WRECKS
#TBT
THE PRESIDENTS
WORDS
RETROBITUARIES