CLOSE
Thinkstock
Thinkstock

How Perfecting Bug Spray Could Save Millions of Lives

Thinkstock
Thinkstock

Mosquitoes ruin countless American picnics every year, but around the world, the whine of this bloodsucking beast isn’t just irritating—it heralds an epic health problem. More than a million people die from the spread of mosquito-borne diseases like malaria, dengue fever, and yellow fever each year. Attempts to control populations via insecticides like DDT have had ruinous side effects for nature and possibly human health. Neurobiologist Leslie B. Vosshall has a different solution for stopping the insects and the spread of disease. “I believe the key to controlling mosquito behavior is to understand better how they sense us,” she says.

At their Rockefeller University lab, Vosshall and her colleagues are studying the chemical sensory processes by which mosquitoes choose hosts. How do they sense heat, humidity, carbon dioxide, and body odor? What makes some people more attractive to a mosquito than others? It takes blood and sweat to find out. To study how mosquitoes assess body odor, Vosshall and her teammates might wear nylon stockings on their arms and refrain from showering for 24 hours to create sample smells. Then comes the hard part. They insert their limbs into the insects’ den to study how mosquitoes land, bite, and feed and then they document how this changes depending on both the mosquitoes’ genetics and the particular traits of the scientists’ skin. This can mean getting anywhere from one bite to a whopping 400, depending on the experiment. Studying male mosquitoes is more pleasant; since they don’t feed on blood, the lab tests their sense of smell using honey.

Making Mutant Mosquitoes

Vosshall and her team have also begun to study how genetics contribute to mosquitoes’ choice of a host. With a bit of tinkering, she’s even created a breed that is unable to sense carbon dioxide, an important trigger for the insects. “By using genetics to make mutant mosquitoes, we can document exactly how and why this cue acts to make mosquitoes hunt humans,” Vosshall says.

Once Vosshall figures out what makes mosquitoes flock to us, she can get to work on making them leave us alone. Many of her lab’s proposed solutions sound simple enough, including bracelets that carry long-lasting repellants or traps that can reduce populations, but the breakthroughs may save millions of lives in the developing world—and a lot of itching everywhere else.

This story originally appeared in the Think Small issue of mental_floss magazine. Get a free issue here!

nextArticle.image_alt|e
iStock
arrow
science
Today's Wine Glasses Are Almost Seven Times Larger Than They Were in 1700
iStock
iStock

Holiday party season (a.k.a. hangover season) is in full swing. While you likely have no one to blame but yourself for drinking that second (or third) pour at the office soiree, your glassware isn't doing you any favors—especially if you live in the UK. Vino vessels in England are nearly seven times larger today than they were in 1700, according to a new study spotted by Live Science. These findings were recently published in the English medical journal The BMJ.

Researchers at the University of Cambridge measured more than 400 wineglasses from the past three centuries to gauge whether glass size affects how much we drink. They dug deep into the history of parties past, perusing both the collections of the Ashmolean Museum of Art and Archaeology at the University of Oxford and the Royal Household's assemblage of glassware (a new set is commissioned for each monarch). They also scoured a vintage catalog, a modern department store, and eBay for examples.

After measuring these cups, researchers concluded that the average wineglass in 1700 held just 2.2 fluid ounces. For comparison's sake, that's the size of a double shot at a bar. Glasses today hold an average of 15.2 fluid ounces, even though a standard single serving size of wine is just 5 ounces.

BMJ infographic detailing increases in wine glass size from 1700 to 2017
BMJ Publishing group Ltd.

Advances in technology and manufacturing are partly to blame for this increase, as is the wine industry. Marketing campaigns promoted the beverage as it increasingly became more affordable and available for purchase, which in turn prompted aficionados to opt for larger pours. Perhaps not surprisingly, this bigger-is-better mindset was also compounded by American drinking habits: Extra-large wineglasses became popular in the U.S. in the 1990s, prompting overseas manufacturers to follow suit.

Wine consumption in both England and America has risen dramatically since the 1960s [PDF]. Cambridge researchers noted that their study doesn't necessarily prove that the rise of super-sized glassware has led to this increase. But their findings do fit a larger trend: previous studies have found that larger plate size can increase food consumption. This might be because they skew our sense of perception, making us think we're consuming less than we actually are. And in the case of wine, in particular, oversized glasses could also heighten our sensory enjoyment, as they might release more of the drink's aroma.

“We cannot infer that the increase in glass size and the rise in wine consumption in England are causally linked,” the study's authors wrote. “Nor can we infer that reducing glass size would cut drinking. Our observation of increasing size does, however, draw attention to wine glass size as an area to investigate further in the context of population health.”

[h/t Live Science]

nextArticle.image_alt|e
iStock
arrow
science
Researchers Pore Over the Physics Behind the Layered Latte
iStock
iStock

The layered latte isn't the most widely known espresso drink on coffee-shop menus, but it is a scientific curiosity. Instead of a traditional latte, where steamed milk is poured into a shot (or several) of espresso, the layered latte is made by pouring the espresso into a glass of hot milk. The result is an Instagram-friendly drink that features a gradient of milky coffee colors from pure white on the bottom to dark brown on the top. The effect is odd enough that Princeton University researchers decided to explore the fluid dynamics that make it happen, as The New York Times reports.

In a new study in Nature Communications, Princeton engineering professor Howard Stone and his team explore just what creates the distinct horizontal layers pattern of layered latte. To find out, they injected warm, dyed water into a tank filled with warm salt water, mimicking the process of pouring low-density espresso into higher-density steamed milk.

Four different images of a latte forming layers over time
Xue et al., Nature Communications (2017)

According to the study, the layered look of the latte forms over the course of minutes, and can last for "tens of minutes, or even several hours" if the drink isn't stirred. When the espresso-like dyed water was injected into the salt brine, the downward jet of the dyed water floated up to the top of the tank, because the buoyant force of the low-density liquid encountering the higher-density brine forced it upward. The layers become more visible when the hot drink cools down.

The New York Times explains it succinctly:

When the liquids try to mix, layered patterns form as gradients in temperature cause a portion of the liquid to heat up, become lighter and rise, while another, denser portion sinks. This gives rise to convection cells that trap mixtures of similar densities within layers.

This structure can withstand gentle movement, such as a light stirring or sipping, and can stay stable for as long as a day or more. The layers don't disappear until the liquids cool down to room temperature.

But before you go trying to experiment with layering your own lattes, know that it can be trickier than the study—which refers to the process as "haphazardly pouring espresso into a glass of warm milk"—makes it sound. You may need to experiment several times with the speed and height of your pour and the ratio of espresso to milk before you get the look just right.

[h/t The New York Times]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios