Mythical Yetis are Actually Bears, According to DNA Analysis

Walkabout Films via Flickr // CC BY-ND 2.0
Walkabout Films via Flickr // CC BY-ND 2.0

In 1959, the U.S. government advised hunters that they were permitted to kill a Yeti only in self-defense. The decree was prompted by findings from earlier expeditions—huge footprints, hides, and bones from a large, unidentified creature native to the Himalayas—which explorers thought could be from the mythical hominid that local Sherpas called the Yeti, or "wild man."

But now, researchers at the State University of New York in Buffalo and their colleagues have concluded that folklore about abominable snowmen in the Himalayas was just that. After testing evidence collected from the Tibetan Plateau and from museum collections, they found the biological root of the Yeti legends to be local bears.

In the new study, published in the Proceedings of the Royal Society B, researchers analyzed 24 hair, bone, tooth, skin, and scat samples. Nine of the samples were purported to be from Yetis, while the rest were gathered recently from the Tibetan brown bear, Himalayan brown bear, and Himalayan black bear. The team assembled complete mitochondrial genomes for the Himalayan brown bear and black bear for the first time, then analyzed and compared all of the samples. Of the nine allegedly from Yetis, eight were actually from Asian bears. One was from a dog.

While these particular findings suggest that the Yeti stories probably emerged from humans' encounters with bears, the study provides valuable genetic data that could shed light on how the bears evolved. The mitochondrial genomes—which are based on the genetic information passed down only through females—could reveal when the rare subspecies and more common bear species last shared a maternal ancestor, and how genetically dissimilar they are today, Science notes.

The genomic analysis showed that Tibetan brown bears share a close ancestry with North American and Eurasian brown bears. But the Himalayan brown bears branched off from their common ancestral tree about 650,000 years ago, when glaciers expanded over the Tibetan Plateau—which may have separated those bears from the larger gene pool. Understanding how the subspecies evolved could illuminate the environmental history of the region, said Charlotte Lindqvist, an associate professor of biological sciences at SUNY Buffalo and the study's lead scientist, in a statement. The genetic data may assist conservation of these vulnerable and endangered animals.

Lindqvist said that their technique could also be a useful tool for exploring the roots of folklore about large cryptids—as well as real beasts.

"Our findings strongly suggest that the biological underpinnings of the Yeti legend can be found in local bears," she said. "Our study demonstrates that genetics should be able to unravel other, similar mysteries."

How to Relieve a Tension Headache in 10 Seconds, According to a Physical Therapist

iStock.com/SIphotography
iStock.com/SIphotography

The source of a pounding headache isn't always straightforward. Sometimes over-the-counter painkillers have no effect, and in other cases all you need is a glass of water to ease the pain. When it comes to a specific type of a headache, Prevention recommends a treatment that takes about 10 seconds—no fancy medications or equipment required.

If you're experiencing pain throughout your head and neck, you may have a tension headache. This type of headache can happen when you tense the muscles in your jaw—something many people do when stressed. This tightening triggers a chain reaction where the surrounding muscles in the head and neck become tense, which results in a painful, stiff feeling.

Fortunately, there's a way to treat tension headaches that's even easier than popping an Advil. David Reavy, a physical therapist known for his work with NFL and NBA athletes, recently suggested a solution to Prevention writer Christine Mattheis called the masseter release. To practice it yourself, look for the masseter muscle—the thick tissue that connects your jawbone to your cheekbone on either side of your face—with your fingers. Once you've found them, press the spots gently, open your mouth as wide as you can, close it, and repeat until you feel the muscle relax. Doing this a few times a day helps combat whatever tension is caused by clenching your jaw.

If that doesn't work, it's possible that the masseter muscle isn't the source of your headache after all. In that case, read up on the differences among popular pain killers to determine which one is the best match for your pain.

[h/t Prevention]

Why Do Hangovers Get Worse As You Get Older?

iStock/OcusFocus
iStock/OcusFocus

“I just can’t drink like I used to” is a common refrain among people pushing 30 and beyond. This is roughly the age when it starts getting harder to bounce back from a night of partying, and unfortunately, it keeps getting harder from there on out.

Even if you were the keg flip king or queen in college, consuming the same amount of beer at 29 that you consumed at 21 will likely have you guzzling Gatorade in bed the next day. It’s true that hangovers tend to worsen with age, and it’s not just because you have a lower alcohol tolerance from going out less. Age affects your body in various ways, and the way you process alcohol is one of them.

Because your body interprets alcohol as poison, your liver steps in to convert it into different chemicals that are easier to break down and eliminate from your body. As you get older, though, your liver produces less of the enzymes and antioxidants that help metabolize alcohol, according to a study from South Korea. One of these enzymes—called alcohol dehydrogenase (ADH)— has been called the “primary defense” against alcohol. It kicks off the multi-step process of alcohol metabolization by turning the beer or booze—or whatever you imbibed—into a chemical compound called acetaldehyde. Ironically, this substance is even more toxic than your tipple of choice, and a build-up of acetaldehyde can cause nausea, palpitations, and face flushing. It usually isn’t left in this state for long, though.

Another enzyme called aldehyde dehydrogenase (ALDH) helps convert the bad toxin into a new substance called acetate, which is a little like vinegar. Lastly, it’s converted into carbon dioxide or water and expelled from your body. You’ve probably heard the one-drink-per-hour recommendation, which is roughly how long it takes for your liver to complete this whole process.

So what does this mean for occasional drinkers whose mid-20s have come and gone? To summarize: As your liver enzymes diminish with age, your body becomes less efficient at metabolizing alcohol. The alcohol lingers longer in your body, leading to prolonged hangover symptoms like headaches and nausea.

This phenomenon can also partly be explained by the fact that our bodies tend to lose muscle and water over time. People with more body fat don’t break down alcohol as well, and less water in your body means that the booze stays concentrated in your system longer, The Cut reports. This is one of the reasons why women, who tend to have a higher body fat percentage than men, often suffer worse hangovers than their male counterparts. (Additionally, women have fewer ADH enzymes.)

More depressingly, as you get older, your immune system deteriorates through a process called immunosenescence. This means that recovering from anything—hangovers included—is more challenging with age. "When we get older, our whole recovery process for everything we do is harder, longer, and slower," gastroenterologist Mark Welton told Men’s Health.

This may seem like a buzzkill, but we're not telling you to put down the pint. However, if you're going to drink, just be aware of your body’s limitations. Shots of cotton candy-flavored vodka were a bad idea in college, and they’re an especially bad idea now. Trust us.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

SECTIONS

arrow
LIVE SMARTER