7 Shining Facts About the Sun

NASA
NASA

Isaac Asimov described the solar system as the Sun, Jupiter, and debris. He wasn't wrong—the Sun is 99.8 percent of the mass of the solar system. But what is the giant ball of fire in the sky? How does it behave and what mysteries remain? Mental Floss spoke to Angelos Vourlidas, an astrophysicist and the supervisor of the Solar Section at Johns Hopkins University Applied Physics Laboratory, to learn what scientists know about the Sun—and a few things they don't.

1. IT'S A GIANT NUCLEAR FUSION REACTOR.

The Sun is so incomprehensibly big that it's almost pointless to bother trying to imagine its size. Our star is about 860,000 miles across. It is so big that 1.3 million Earths could fit inside of it. The Sun is 4.5 billion years old, and should last for another 6.5 billion years. When it faces the final curtain, it will not go supernova, however, as lacks the mass for such an end. Rather, the Sun will grow to a red giant—destroying the Earth in the process, if we last that long, which we won't—and then contract down to become a white dwarf.

The Sun is 74 percent hydrogen and 25 percent helium, with a few other elements thrown in for flavor, and every second, nuclear reactions at its core fuse hundreds of millions of tons of hydrogen into hundreds of millions of tons of helium, releasing the heat and light that we love so very much.

2. IT HAS A GALACTIC-SCALE ORBIT.

The Sun rotates, though not quite the same way as a terrestrial planet like the Earth. Like the gas and ice giants, the Sun's equator and poles complete their rotations at different times. It takes the Sun's equator 24 days to complete a rotation. Its poles poke along and rotate every 35 days. Meanwhile, the Sun actually has its own orbit. Moving at 450,000 miles per hour, the Sun is in orbit around the center of the Milky Way galaxy, making a full loop every 230 million years.

3. IT'S HOT IN ODD WAYS.


The solar corona as captured every two hours for four days. Red is cool (~80,000°F), while yellow is hot (~2,800,000°F).
Angelos Vourlidas, JHU/APL

The Sun's temperatures leave astrophysicists puzzled. At its core, it reaches a staggering 27,000,000°F. Its surface is a frosty 10,000°F, which, as NASA notes, is still hot enough to make diamonds boil. Here's the weird part, though. Once you get into the higher parts of the Sun's corona, temperatures again rise to 3,500,000°F. Why? Nobody knows!

4. THE SUN HAS AN ATMOSPHERE—AND THE EARTH IS INSIDE IT.

If you saw the total solar eclipse earlier this year, you saw the Sun turn black, ringed by a shimmering white corona. That halo was part of the Sun's atmosphere. And it's a lot bigger than that. In fact, the Earth is inside of the Sun's atmosphere. "It basically goes as far away as Jupiter," Vourlidas tells Mental Floss. The Sun is a semi-chaotic system. Every 100 years or so, the Sun seems to go into a small "sleep," and for two or three decades, its activity is reduced. When it wakes, it becomes much more active and violent. Scientists are not sure why that is. Presently we are in one of those solar lulls.

5. THE IRON IN YOUR BLOOD COMES FROM THE SUN'S SIBLINGS.

The Sun lacks a solid core. At 27,000,000°F, it's all plasma down there. "That's where most of the heavy elements like iron and uranium are created—at the cores of stars," Vourlidas says. "When the stars explode, they are released into space. Planets form out of that debris, and that's where we get the same iron in our blood and the carbon in our cells. They were made in some star." Not ours, obviously, but a star that exploded in our neighborhood before our Sun was born. Other elements created from the cores of stars include gold, silver, and plutonium. That is what Carl Sagan meant when he said that we are children of the stars.

6. THE HOLY GRAIL OF SUN SCIENCE IS UNDERSTANDING ERUPTIONS.

The ability to predict solar storms is the holy grail for astrophysicists who study the Sun. During a coronal mass ejection, a billion tons of plasma material can be blown from the Sun at millions of miles per hour. The eruptions carry around 300 petawatts of energy—that's 50,000 times the amount of energy that humans use in a single year. As the structures travel from the Sun, they expand, and when they hit the Earth, a percentage of their energy is imparted. Those impacts can create havoc. Spacecraft are affected, airliners receive surges of x-rays, and the energy grid can be disrupted—one day perhaps catastrophically so. "Our models say it can happen every 200 years," says Vourlidas, "but the Sun doesn't know about our models."

The last such strike on the Earth is believed to have occurred in 1859. The telegraph system collapsed, but the effect on society was minimal overall. (The widespread use of electric lighting and the first power grids were still decades away.) If the Earth were to sustain a similar such destructive event today, the effects might be devastating. "It is the most violent phenomenon in our solar system," Vourlidas explains. "We need to know when such an amount of plasma has left the Sun, whether it will hit the Earth, and how hard it is going to slap us." Such foresight would allow spacecraft to power down sensitive instruments and power grids to switch off where necessary, among other things.

7. NASA'S NEXT STOP: THE SUN.


Wind moving off of the Sun in visible light. If you were in a spaceship and didn't melt, that's what you would see. The zooming effect simulates what an imager on the Parker Solar Probe will see.
Angelos Vourlidas, JHU/APL

Next year, NASA will launch the Applied Physics Laboratory's Parker Solar Probe to "kiss" the Sun. It will travel to within 4 million miles of our star—the closest we've ever come—and will study the corona and the solar wind. "At the moment, the only way we understand that system is by seeing what the properties of the wind are at Earth, and then trying to extrapolate back toward the Sun," says Vourlidas. "It's an indirect exercise. But the probe will measure the wind—how fast it is, how dense, what is the magnetic field—across multiple locations as it orbits the Sun." Once scientists get those measurements, theorists will attempt to devise new models of the solar wind, and ultimately help better predict solar storms and space weather events.

Editor's Note: This post has been updated. 

Neil Armstrong’s Spacesuit Will Go Back on Display for Apollo 11's 50th Anniversary

Phil Plait, Wikimedia Commons // CC BY-SA 2.0
Phil Plait, Wikimedia Commons // CC BY-SA 2.0

Neil Armstrong made history when he became the first person to walk on the Moon 50 years ago. Space exploration has changed since then, but the white space suit with the American flag patch that Armstrong wore on that first walk is still what many people think of when they picture an astronaut. Now, after sitting in storage for a decade, that iconic suit is ready to go on display, according to Smithsonian.

NASA donated Neil Armstrong's suit to the Smithsonian shortly after the Apollo 11 mission. For about 30 years, it was displayed at the National Air and Space Museum in Washington, D.C. Then, in 2006, the museum moved the artifact to storage to minimize damage.

Even away from the exhibit halls, the suit was deteriorating, and the Smithsonian knew it would need to be better preserved if it was to be shown to the public again. In 2015, the institution launched its first-ever Kickstarter campaign and raised more than $700,000 for conservation efforts.

After a multi-year preservation project, the suit will finally return to the museum floor on July 16, 2019—the date that marks 50 years since Apollo 11 launched. This time around, the suit will be displayed on a structure that was custom built to support its interior, protecting it from the weight of gravity. Climate-controlled air will flow through the gear to recreate the stable environment of a storage unit.

Even if you can't make it to the National Air and Space Museum to see Armstrong's space suit in person, soon you'll be able to appreciate it from home in a whole new way. The museum used various scanning techniques to create an intricate 3D model of the artifact. Once the scans are reconfigured for home computers, the Smithsonian's digitization team plans to make an interactive version of the digital model freely available on its website.

[h/t Smithsonian]

What Is the Kitchen Like on the International Space Station?

iStock/Elen11
iStock/Elen11

Clayton C. Anderson:

The International Space Station (ISS) does not really have a "kitchen" as many of us here on Earth might relate to. But, there is an area called the "galley" which serves the purpose of allowing for food preparation and consumption. I believe the term "galley" comes from the military, and it was used specifically in the space shuttle program. I guess it carried over to the ISS.

The Russian segment had the ONLY galley when I flew in 2007. There was a table for three, and the galley consisted of a water system—allowing us to hydrate our food packages (as needed) with warm (tepid) or hot (extremely) water—and a food warmer. The food warmer designed by the Russians was strictly used for their cans of food (about the size of a can of cat food in America). The U.S. developed a second food warmer (shaped like a briefcase) that we could use to heat the more "flexibly packaged" foodstuffs (packets) sent from America.

Later in the ISS lifetime, a second galley area was provided in the U.S. segment. It is positioned in Node 1 (Unity) and a table is also available there for the astronauts' dining pleasures. Apparently, it was added because of the increasing crew size experienced these days (6), to have more options. During my brief visit to ISS in 2010 (12 days or so) as a Discovery crewmember, I found the mealtimes to be much more segregated than when I spent five months on board. The Russians ate in the Russian segment. The shuttle astronauts ate in the shuttle. The U.S. ISS astronauts ate in Node 1, but often at totally different times. While we did have a combined dinner in Node 1 during STS-131 (with the Expedition 23 crew), this is one of the perceived negatives of the "multiple-galley" scenario. My long duration stint on ISS was highlighted by the fact that Fyodor Yurchikhin, Oleg Kotov, and I had every single meal together. The fellowship we—or at least I—experienced during those meals is something I will never, ever forget. We laughed, we argued, we celebrated, we mourned …, all around our zero-gravity "dinner table." Awesome stuff!

This post originally appeared on Quora. Click here to view.

Clayton "Astro Clay" Anderson is an astronaut, motivational speaker, author, and STEAM education advocate.

His award-winning book The Ordinary Spaceman, Astronaut Edition Fisher Space Pen, and new children's books A is for Astronaut; Blasting Through the Alphabet and It's a Question of Space: An Ordinary Astronaut's Answers to Sometimes Extraordinary Questions are available at www.AstroClay.com. For speaking events www.AstronautClayAnderson.com. Follow @Astro_Clay #WeBelieveInAstronauts

SECTIONS

arrow
LIVE SMARTER