7 Shining Facts About the Sun

NASA
NASA

Isaac Asimov described the solar system as the Sun, Jupiter, and debris. He wasn't wrong—the Sun is 99.8 percent of the mass of the solar system. But what is the giant ball of fire in the sky? How does it behave and what mysteries remain? Mental Floss spoke to Angelos Vourlidas, an astrophysicist and the supervisor of the Solar Section at Johns Hopkins University Applied Physics Laboratory, to learn what scientists know about the Sun—and a few things they don't.

1. IT'S A GIANT NUCLEAR FUSION REACTOR.

The Sun is so incomprehensibly big that it's almost pointless to bother trying to imagine its size. Our star is about 860,000 miles across. It is so big that 1.3 million Earths could fit inside of it. The Sun is 4.5 billion years old, and should last for another 6.5 billion years. When it faces the final curtain, it will not go supernova, however, as lacks the mass for such an end. Rather, the Sun will grow to a red giant—destroying the Earth in the process, if we last that long, which we won't—and then contract down to become a white dwarf.

The Sun is 74 percent hydrogen and 25 percent helium, with a few other elements thrown in for flavor, and every second, nuclear reactions at its core fuse hundreds of millions of tons of hydrogen into hundreds of millions of tons of helium, releasing the heat and light that we love so very much.

2. IT HAS A GALACTIC-SCALE ORBIT.

The Sun rotates, though not quite the same way as a terrestrial planet like the Earth. Like the gas and ice giants, the Sun's equator and poles complete their rotations at different times. It takes the Sun's equator 24 days to complete a rotation. Its poles poke along and rotate every 35 days. Meanwhile, the Sun actually has its own orbit. Moving at 450,000 miles per hour, the Sun is in orbit around the center of the Milky Way galaxy, making a full loop every 230 million years.

3. IT'S HOT IN ODD WAYS.


The solar corona as captured every two hours for four days. Red is cool (~80,000°F), while yellow is hot (~2,800,000°F).
Angelos Vourlidas, JHU/APL

The Sun's temperatures leave astrophysicists puzzled. At its core, it reaches a staggering 27,000,000°F. Its surface is a frosty 10,000°F, which, as NASA notes, is still hot enough to make diamonds boil. Here's the weird part, though. Once you get into the higher parts of the Sun's corona, temperatures again rise to 3,500,000°F. Why? Nobody knows!

4. THE SUN HAS AN ATMOSPHERE—AND THE EARTH IS INSIDE IT.

If you saw the total solar eclipse earlier this year, you saw the Sun turn black, ringed by a shimmering white corona. That halo was part of the Sun's atmosphere. And it's a lot bigger than that. In fact, the Earth is inside of the Sun's atmosphere. "It basically goes as far away as Jupiter," Vourlidas tells Mental Floss. The Sun is a semi-chaotic system. Every 100 years or so, the Sun seems to go into a small "sleep," and for two or three decades, its activity is reduced. When it wakes, it becomes much more active and violent. Scientists are not sure why that is. Presently we are in one of those solar lulls.

5. THE IRON IN YOUR BLOOD COMES FROM THE SUN'S SIBLINGS.

The Sun lacks a solid core. At 27,000,000°F, it's all plasma down there. "That's where most of the heavy elements like iron and uranium are created—at the cores of stars," Vourlidas says. "When the stars explode, they are released into space. Planets form out of that debris, and that's where we get the same iron in our blood and the carbon in our cells. They were made in some star." Not ours, obviously, but a star that exploded in our neighborhood before our Sun was born. Other elements created from the cores of stars include gold, silver, and plutonium. That is what Carl Sagan meant when he said that we are children of the stars.

6. THE HOLY GRAIL OF SUN SCIENCE IS UNDERSTANDING ERUPTIONS.

The ability to predict solar storms is the holy grail for astrophysicists who study the Sun. During a coronal mass ejection, a billion tons of plasma material can be blown from the Sun at millions of miles per hour. The eruptions carry around 300 petawatts of energy—that's 50,000 times the amount of energy that humans use in a single year. As the structures travel from the Sun, they expand, and when they hit the Earth, a percentage of their energy is imparted. Those impacts can create havoc. Spacecraft are affected, airliners receive surges of x-rays, and the energy grid can be disrupted—one day perhaps catastrophically so. "Our models say it can happen every 200 years," says Vourlidas, "but the Sun doesn't know about our models."

The last such strike on the Earth is believed to have occurred in 1859. The telegraph system collapsed, but the effect on society was minimal overall. (The widespread use of electric lighting and the first power grids were still decades away.) If the Earth were to sustain a similar such destructive event today, the effects might be devastating. "It is the most violent phenomenon in our solar system," Vourlidas explains. "We need to know when such an amount of plasma has left the Sun, whether it will hit the Earth, and how hard it is going to slap us." Such foresight would allow spacecraft to power down sensitive instruments and power grids to switch off where necessary, among other things.

7. NASA'S NEXT STOP: THE SUN.


Wind moving off of the Sun in visible light. If you were in a spaceship and didn't melt, that's what you would see. The zooming effect simulates what an imager on the Parker Solar Probe will see.
Angelos Vourlidas, JHU/APL

Next year, NASA will launch the Applied Physics Laboratory's Parker Solar Probe to "kiss" the Sun. It will travel to within 4 million miles of our star—the closest we've ever come—and will study the corona and the solar wind. "At the moment, the only way we understand that system is by seeing what the properties of the wind are at Earth, and then trying to extrapolate back toward the Sun," says Vourlidas. "It's an indirect exercise. But the probe will measure the wind—how fast it is, how dense, what is the magnetic field—across multiple locations as it orbits the Sun." Once scientists get those measurements, theorists will attempt to devise new models of the solar wind, and ultimately help better predict solar storms and space weather events.

Editor's Note: This post has been updated. 

Does the Full Moon Really Make People Act Crazy?

iStock.com/voraorn
iStock.com/voraorn

Along with Mercury in retrograde, the full moon is a pretty popular scapegoat for bad luck and bizarre behavior. Encounter someone acting strangely? Blame it on the lunar phases! It's said that crime rates increase and emergency rooms are much busier during the full moon (though a 2004 study debunked this claim). Plus, there's that whole werewolf thing. Why would this be? The reasoning is that the moon, which affects the ocean's tides, probably exerts a similar effect on us, because the human body is made mostly of water.

This belief that the moon influences behavior is so widely held—reportedly, even 80 percent of nurses and 64 percent of doctors think it's true, according to a 1987 paper published in the Journal of Emergency Medicine [PDF]—that in 2012 a team of researchers at Université Laval's School of Psychology in Canada decided to find out if mental illness and the phases of the moon are linked [PDF].

To test the theory, the researchers evaluated 771 patients who visited emergency rooms at two hospitals in Montreal between March 2005 and April 2008. The patients chosen complained of chest pains, which doctors could not determine a medical cause for the pains. Many of the patients suffered from panic attacks, anxiety and mood disorders, or suicidal thoughts.

When the researchers compared the time of the visits to the phases of the moon, they found that there was no link between the incidence of psychological problems and the four lunar phases, with one exception: in the last lunar quarter, anxiety disorders were 32 percent less frequent. "This may be coincidental or due to factors we did not take into account," Dr. Geneviève Belleville, who directed the team of researchers, said. "But one thing is certain: we observed no full-moon or new-moon effect on psychological problems."

So rest easy (or maybe not): If people seem to act crazy during the full moon, their behavior is likely pretty similar during the rest of the lunar cycle as well.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

Rare Harvest ‘Micromoon’ Will Appear on Friday the 13th

pattier/iStock via Getty Images
pattier/iStock via Getty Images

The first Friday the 13th of 2019 is coming this September, coinciding with a spooky full moon—and that unlucky event will also be a harvest micromoon, Newsweek reports. Here's everything you need to know about the lunar spectacle.

What is a harvest micromoon?

Harvest moon describes the full moon that appears in September. You may have heard that the harvest moon is larger and deeper in color than full moons that appear at different times of the year, but this isn't the case. The name harvest moon has nothing to do with its size or appearance. Many people observe the harvest moon just as it surfaces above the horizon—the time when it looks biggest due to the moon illusion, and reddish or orange-y through the filter of Earth's atmosphere. But as the moon climbs higher in the sky throughout the night, these characteristics fade away—just as they would at any other time of year.

This year, the harvest moon will actually look smaller compared to other full moons. On Friday, September 13, the celestial body reaches its apogee, or the point in its orbit where it's farthest from Earth. It has been dubbed a micromoon, which is the opposite of a supermoon.

When to see the harvest micromoon

Besides its scaled-down appearance, Friday's moon won't look any different from a regular full moon. But its rare conjunction with Friday the 13th makes it an event that anyone with a superstitious side won't want to miss. The moon will achieve maximum fullness at 12:33 a.m. the morning of Saturday, September 14 in the Eastern time zone (earlier the further west you go), but it will appear full and bright the previous and following nights. To catch the mini-moon on the 13th, look up late Friday night in a place with minimal light pollution. And if you want the full harvest moon effect, look to the horizon just after moonrise at 7:33 p.m.

[h/t Newsweek]

SECTIONS

arrow
LIVE SMARTER