More Details Emerge About 'Oumuamua, Earth's First-Recorded Interstellar Visitor

 NASA/JPL-Caltech
NASA/JPL-Caltech

In October, scientists using the University of Hawaii's Pan-STARRS 1 telescope sighted something extraordinary: Earth's first confirmed interstellar visitor. Originally called A/2017 U1, the once-mysterious object has a new name—'Oumuamua, according to Scientific American—and researchers continue to learn more about its physical properties. Now, a team from the University of Hawaii's Institute of Astronomy has published a detailed report of what they know so far in Nature.

Fittingly, "'Oumuamua" is Hawaiian for "a messenger from afar arriving first." 'Oumuamua's astronomical designation is 1I/2017 U1. The "I" in 1I/2017 stands for "interstellar." Until now, objects similar to 'Oumuamua were always given "C" and "A" names, which stand for either comet or asteroid. New observations have researchers concluding that 'Oumuamua is unusual for more than its far-flung origins.

It's a cigar-shaped object 10 times longer than it is wide, stretching to a half-mile long. It's also reddish in color, and is similar in some ways to some asteroids in our solar system, the BBC reports. But it's much faster, zipping through our system, and has a totally different orbit from any of those objects.

After initial indecision about whether the object was a comet or an asteroid, the researchers now believe it's an asteroid. Long ago, it might have hurtled from an unknown star system into our own.

'Oumuamua may provide astronomers with new insights into how stars and planets form. The 750,000 asteroids we know of are leftovers from the formation of our solar system, trapped by the Sun's gravity. But what if, billions of years ago, other objects escaped? 'Oumuamua shows us that it's possible; perhaps there are bits and pieces from the early years of our solar system currently visiting other stars.

The researchers say it's surprising that 'Oumuamua is an asteroid instead of a comet, given that in the Oort Cloud—an icy bubble of debris thought to surround our solar system—comets are predicted to outnumber asteroids 200 to 1 and perhaps even as high as 10,000 to 1. If our own solar system is any indication, it's more likely that a comet would take off before an asteroid would.

So where did 'Oumuamua come from? That's still unknown. It's possible it could've been bumped into our realm by a close encounter with a planet—either a smaller, nearby one, or a larger, farther one. If that's the case, the planet remains to be discovered. They believe it's more likely that 'Oumuamua was ejected from a young stellar system, location unknown. And yet, they write, "the possibility that 'Oumuamua has been orbiting the galaxy for billions of years cannot be ruled out."

As for where it's headed, The Atlantic's Marina Koren notes, "It will pass the orbit of Jupiter next May, then Neptune in 2022, and Pluto in 2024. By 2025, it will coast beyond the outer edge of the Kuiper Belt, a field of icy and rocky objects."

Last month, University of Wisconsin–Madison astronomer Ralf Kotulla and scientists from UCLA and the National Optical Astronomy Observatory (NOAO) used the WIYN Telescope on Kitt Peak, Arizona, to take some of the first pictures of 'Oumuamua. You can check them out below.

Images of an interloper from beyond the solar system — an asteroid or a comet — were captured on Oct. 27 by the 3.5-meter WIYN Telescope on Kitt Peak, Ariz.
Images of 'Oumuamua—an asteroid or a comet—were captured on October 27.
WIYN OBSERVATORY/RALF KOTULLA

U1 spotted whizzing through the Solar System in images taken with the WIYN telescope. The faint streaks are background stars. The green circles highlight the position of U1 in each image. In these images U1 is about 10 million times fainter than the faint
The green circles highlight the position of U1 in each image against faint streaks of background stars. In these images, U1 is about 10 million times fainter than the faintest visible stars.
R. Kotulla (University of Wisconsin) & WIYN/NOAO/AURA/NSF

Color image of U1, compiled from observations taken through filters centered at 4750A, 6250A, and 7500A.
Color image of U1.
R. Kotulla (University of Wisconsin) & WIYN/NOAO/AURA/NSF

Editor's note: This story has been updated.

A Snow Moon—the Year’s Brightest Supermoon—Will Be Visible Next Week

iStock.com/jamesvancouver
iStock.com/jamesvancouver

Save the date: The next supermoon is set to light up skies on Tuesday, February 19. Because of when it's arriving, the event will also be a snow moon—a type of full moon that can only been seen this time of year, USA Today reports.

What is a supermoon?

A supermoon occurs when the moon is at its largest in the night sky. That means the Moon is not only full, but also at the point in its orbit that brings it closest to Earth—a position called perigee. On Tuesday, the Moon will appear 14 percent larger and 30 percent brighter than when it's farthest from our planet, making it the brightest supermoon of 2019.

This next supermoon will also have a fun nickname that fits the season. The full moon of each month has a special name. A harvest moon, the first full moon of September, is the best-known moniker, but there are also strawberry moons (June), sturgeon moons (August), and so on. A snow moon is the name for the full moon in February, alluding to February being the snowiest month of the year in the U.S.

When to watch the next supermoon

If the weather is clear in your area, the best time to see the super snow moon is early Tuesday morning on February 19, when the moon reaches its perigee. The Moon will become officially full six hours later at 10:53 a.m. EST. Sunday, Monday, and Tuesday nights will also offer spectacular views of a seemingly huge, nearly full moon.

Supermoons usually happen just a few times a year, but skygazers won't have to wait long for the next one: There's a super worm moon coming March 21, 2019.

[h/t USA Today]

11 Photos From the Opportunity Rover's Mission on Mars

NASA
NASA

In 2004, the rover Opportunity landed on Mars. Originally intended to serve a mere 90-day mission, the rover instead beamed back scientific discoveries for 15 years. But since a massive dust storm in 2018, the rover Opportunity ceased sending data—and now, NASA has declared its groundbreaking mission complete. (Its twin rover, Spirit, ended its mission in 2011.) Opportunity is the longest-serving robot ever sent to another planet. Let's celebrate Opportunity's Mars mission with a look at the images it captured.

1. Opportunity rover gets its first 360° shot.

Rover Opportunity's 360° photo of Mars
NASA/JPL/Cornell 

This 360° panorama, comprised of 225 frames, shows Mars as it was seen by the Opportunity rover on February 2, 2004. You can see marks made by the rover's airbags, made as Opportunity rolled to a stop. Here's a larger version of the photo.

2. Opportunity rover finds a meteorite.

Opportunity rover's photo of a meteorite on Mars
NASA/JPL/Cornell

This meteorite, found by Opportunity on January 19, 2005, was the first meteorite ever identified on another planet. The rover's spectrometers revealed that the basketball-sized meteorite was composed mostly of iron and nickel.

3. Opportunity rover shoots the Erebus Crater and drifts.

Opportunity rover's photo of Erebus craters and drift
NASA/JPL-Caltech/Cornell

On October 5, 2005—four months after Opportunity got stuck in an area NASA nicknamed "Purgatory Dune"—the rover skirted wind-deposited drifts in the center of the Erebus Crater, heading west along the outcrop (the light-toned rock) on the crater's rim, and snapped this photo with its PanCam.

4. Opportunity rover captures Martian rock layers.

Opportunity rover's photo of layers on Mars
NASA/JPL/Cornell

Located on the western ledge of the Erebus Crater, this ledge—called "Payson"—has a diverse range of primary and secondary sedimentary layers formed billions of years ago. According to NASA, "these structures likely result from an interplay between windblown and water-involved processes." Opportunity snapped this photo on April 5, 2006.

5. Opportunity rover comes to Cape Verde.

Opportunity rover's photo of Cape Verde
NASA/JPL-Caltech/Cornell

On October 20, 2007, Opportunity celebrated its second Martian birthday (one Martian year = 687 Earth days) by snapping this photo of Cape Verde, a promontory that juts out of the wall of the Victoria Crater. Scattered light from dust on the front sapphire window of the rover's camera created the soft quality of the image and the haze in the right corner.

6. and 7. Opportunity rover is hard at work on Marquette Island.

Opportunity rover's photo of Marquette Island
NASA/JPL-Caltech

This photo shows Opportunity approaching a rock called "Marquette Island" on November 5, 2009. Because its dark color made it stick out, the rover team referred to the rock—which investigations suggested was a stony meterorite—as "Sore Thumb." But it was eventually renamed, according to NASA, using "an informal naming convention of choosing island names for the isolated rocks that the rover is finding as it crosses a relatively barren plain on its long trek from Victoria Crater toward Endeavour Crater."

On November 19, 2009, the rover used its rock abrasion tool to analyze a 2-inch diameter area of Marquette, which scientists called "Peck Bay."

8. Opportunity rover encounters SkyLab Crater.

Opportunity rover's photo of SkyLab Crater
NASA/JPL-Caltech

Opportunity snapped a photo of this small crater, informally called Skylab, on May 12, 2011. Scientists estimate that the 30-foot crater was formed within the past 100,000 years. Click the photo for a larger version. You can also see the crater in stereo if you have a pair of anaglyph glasses!

9. Opportunity rover sees its shadow.

Opportunity rover's selfie
NASA/JPL-Caltech

On its 3051st day on Mars (August 23, 2012), Opportunity snapped this photo of its own shadow stretching into the Endeavour Crater.

10. Opportunity rover sees its first dust devil.

Opportunity rover's photo of a dust devil
NASA/JPL-Caltech/Cornell University/Texas A&M

Though its twin rover, Spirit, had seen many dust devils by this point, Opportunity caught sight of one for the first time on July 15, 2010.

11. Opportunity rover snaps a selfie.

Opportunity rover's self-portrait
NASA/JPL-Caltech/Cornell University/Arizona State University

A girl sure can get dusty traversing the Martian plains! Opportunity snapped the images that comprise this self-portrait with its panoramic camera between January 3 and January 6, 2014, a few days after winds blew off some of the dust on its solar panels. The shadow belongs to the mast—which is not in the photo—that the PanCam is mounted on.

SECTIONS

arrow
LIVE SMARTER