CLOSE
NYC Dot Flickr
NYC Dot Flickr

Why Are Road Partitions Called Jersey Barriers?

NYC Dot Flickr
NYC Dot Flickr

Most people take the partitions that divide the traffic on U.S. highways for granted. But these seemingly simple barriers are actually deceptively sophisticated: Their designs have been well-tested and tweaked to ensure driver safety on both sides of the road in the event of a crash. The most common name for these ubiquitous concrete slabs is “Jersey Barriers”—but why?

Concrete road barriers were first used in California in 1946; they replaced the standard (but weak) wood beam guardrails on the treacherous Grapevine section of the state’s Ridge Route highway—the home of the original “Dead Man’s Curve”—where the roads had a 6 percent downgrade that led to many head-on collisions. Then, in 1949, the state of New Jersey adopted comparable concrete structures and installed preventative parabolic median barriers on the Jugtown Mountain section of US Route 22 in Hunterdon County, which had a similarly hazardous downgrade to the Ridge Route highway.

These original barriers measured 19 inches high and 30 inches wide, with 2 inches buried in the road to provide stability. Each was anchored to the roadbed by steel dowels and consisted of a 2-inch thick outer layer of white concrete to make it more visible at night. Though the initial barriers were somewhat successful in reducing the impact of collisions, New Jersey state highway engineers continued to tinker with the design, creating progressively larger prototypes based on amounts of observed accidents (as opposed to performing controlled crash testing). Eventually, in 1959, they settled on a standard barrier height of 32 full inches above the pavement with a 24-inch-wide base. The base is 3 inches high and is followed by a 13-inch side slope before the barrier becomes vertical. These barriers would be implemented in various states, but would bear the name of the state in which they were developed.

Jersey Barriers are designed to redirect a crash, using the car’s momentum to absorb the impact and slide the vehicle up parallel along the side of the barrier to prevent a rollover. In high-speed crashes with small cars along Jersey Barriers, however, there is a greater likelihood that the car will roll over, so an alternate barrier was created. According to the Federal Highway Administration, the F-Shape barrier has the same 3-inch-high base, but features a side that slopes 10 inches above the pavement—three inches less than the side slope of the Jersey Barrier—and is thus able to better absorb proportional impacts from smaller chassis to prevent a rollover. Though the F-Shape is generally preferred, the use of Jersey Barriers—as well as other barrier designs, including constant slope, single slope, and vertical—are still acceptable, because they adequately pass crash tests administered by the National Highway Traffic Safety Administration.

Additional Source: Federal Highway Adminstration [PDF]; primary image courtesy of NYC Dot Flickr.

nextArticle.image_alt|e
iStock
arrow
Big Questions
Does Einstein's Theory of Relativity Imply That Interstellar Space Travel is Impossible?
iStock
iStock

Does Einstein's theory of relativity imply that interstellar space travel is impossible?

Paul Mainwood:

The opposite. It makes interstellar travel possible—or at least possible within human lifetimes.

The reason is acceleration. Humans are fairly puny creatures, and we can’t stand much acceleration. Impose much more than 1 g of acceleration onto a human for an extended period of time, and we will experience all kinds of health problems. (Impose much more than 10 g and these health problems will include immediate unconsciousness and a rapid death.)

To travel anywhere significant, we need to accelerate up to your travel speed, and then decelerate again at the other end. If we’re limited to, say, 1.5 g for extended periods, then in a non-relativistic, Newtonian world, this gives us a major problem: Everyone’s going to die before we get there. The only way of getting the time down is to apply stronger accelerations, so we need to send robots, or at least something much tougher than we delicate bags of mostly water.

But relativity helps a lot. As soon as we get anywhere near the speed of light, then the local time on the spaceship dilates, and we can get to places in much less (spaceship) time than it would take in a Newtonian universe. (Or, looking at it from the point of view of someone on the spaceship: they will see the distances contract as they accelerate up to near light-speed—the effect is the same, they will get there quicker.)

Here’s a quick table I knocked together on the assumption that we can’t accelerate any faster than 1.5 g. We accelerate up at that rate for half the journey, and then decelerate at the same rate in the second half to stop just beside wherever we are visiting.

You can see that to get to destinations much beyond 50 light years away, we are receiving massive advantages from relativity. And beyond 1000 light years, it’s only thanks to relativistic effects that we’re getting there within a human lifetime.

Indeed, if we continue the table, we’ll find that we can get across the entire visible universe (47 billion light-years or so) within a human lifetime (28 years or so) by exploiting relativistic effects.

So, by using relativity, it seems we can get anywhere we like!

Well ... not quite.

Two problems.

First, the effect is only available to the travelers. The Earth times will be much much longer. (Rough rule to obtain the Earth-time for a return journey [is to] double the number of light years in the table and add 0.25 to get the time in years). So if they return, they will find many thousand years have elapsed on earth: their families will live and die without them. So, even we did send explorers, we on Earth would never find out what they had discovered. Though perhaps for some explorers, even this would be a positive: “Take a trip to Betelgeuse! For only an 18 year round-trip, you get an interstellar adventure and a bonus: time-travel to 1300 years in the Earth’s future!”

Second, a more immediate and practical problem: The amount of energy it takes to accelerate something up to the relativistic speeds we are using here is—quite literally—astronomical. Taking the journey to the Crab Nebula as an example, we’d need to provide about 7 x 1020 J of kinetic energy per kilogram of spaceship to get up to the top speed we’re using.

That is a lot. But it’s available: the Sun puts out 3X1026 W, so in theory, you’d only need a few seconds of Solar output (plus a Dyson Sphere) to collect enough energy to get a reasonably sized ship up to that speed. This also assumes you can transfer this energy to the ship without increasing its mass: e.g., via a laser anchored to a large planet or star; if our ship needs to carry its chemical or matter/anti-matter fuel and accelerate that too, then you run into the “tyranny of the rocket equation” and we’re lost. Many orders of magnitude more fuel will be needed.

But I’m just going to airily treat all that as an engineering issue (albeit one far beyond anything we can attack with currently imaginable technology). Assuming we can get our spaceships up to those speeds, we can see how relativity helps interstellar travel. Counter-intuitive, but true.

This post originally appeared on Quora. Click here to view.

nextArticle.image_alt|e
Chip Somodevilla, Getty Images
arrow
Big Questions
What Does the Sergeant at Arms Do?
House Sergeant at Arms Paul Irving and Donald Trump arrive for a meeting with the House Republican conference.
House Sergeant at Arms Paul Irving and Donald Trump arrive for a meeting with the House Republican conference.
Chip Somodevilla, Getty Images

In 1981, shortly after Howard Liebengood was elected the 27th Sergeant at Arms of the United States Senate, he realized he had no idea how to address incoming president-elect Ronald Reagan on a visit. “The thought struck me that I didn't know what to call the President-elect,'' Liebengood told The New York Times in November of that year. ''Do you call him 'President-elect,' 'Governor,' or what?” (He went with “Sir.”)

It would not be the first—or last—time someone wondered what, exactly, a Sergeant at Arms (SAA) should be doing. Both the House and the Senate have their own Sergeant at Arms, and their visibility is highest during the State of the Union address. For Donald Trump’s State of the Union on January 30, the 40th Senate SAA, Frank Larkin, will escort the senators to the House Chamber, while the 36th House of Representatives SAA, Paul Irving, will introduce the president (“Mister [or Madam] Speaker, the President of the United States!”). But the job's responsibilities extend far beyond being an emcee.

The Sergeants at Arms are also their respective houses’ chief law enforcement officers. Obliging law enforcement duties means supervising their respective wings of the Capitol and making sure security is tight. The SAA has the authority to find and retrieve errant senators and representatives, to arrest or detain anyone causing disruptions (even for crimes such as bribing representatives), and to control who accesses chambers.

In a sense, they act as the government’s bouncers.

Sergeant at Arms Frank Larkin escorts China's president Xi Jinping
Senat Sergeant at Arms Frank Larkin (L) escorts China's president Xi Jinping during a visit to Capitol Hill.
Astrid Riecken, Getty Images

This is not a ceremonial task. In 1988, Senate SAA Henry Giugni led a posse of Capitol police to find, arrest, and corral Republicans missing for a Senate vote. One of them, Republican Senator Bob Packwood of Oregon, had to be carried to the Senate floor to break the filibustering over a vote on senatorial campaign finance reform.

While manhandling wayward politicians sounds fun, it’s more likely the SAAs will be spending their time on administrative tasks. As protocol officer, visits to Congress by the president or other dignitaries have to be coordinated and escorts provided; as executive officer, they provide assistance to their houses of Congress, with the Senate SAA assisting Senate offices with computers, furniture, mail processing, and other logistical support. The two SAAs also alternate serving as chairman of the Capitol Police board.

Perhaps a better question than asking what they do is pondering how they have time to do it all.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios