CLOSE

11-Year-Old Creates a Better Way to Test for Lead in Water

In the wake of the water crisis in Flint, Michigan, a Colorado middle schooler has invented a better way to test lead levels in water, as The Cut reports.

Gitanjali Rao, an 11-year-old seventh grader in Lone Tree, Colorado just won the 2017 Discovery Education 3M Young Scientist Challenge, taking home $25,000 for the water-quality testing device she invented, called Tethys.

Rao was inspired to create the device after watching Flint's water crisis unfold over the last few years. In 2014, after the city of Flint cut costs by switching water sources used for its tap water and failed to treat it properly, lead levels in the city's water skyrocketed. By 2015, researchers testing the water found that 40 percent of homes in the city had elevated lead levels in their water, and recommended the state declare Flint's water unsafe for drinking or cooking. In December of that year, the city declared a state of emergency. Researchers have found that the lead-poisoned water resulted in a "horrifyingly large" impact on fetal death rates as well as leading to a Legionnaires' disease outbreak that killed 12 people.

A close-up of the Tethys device

Rao's parents are engineers, and she watched them as they tried to test the lead in their own house, experiencing firsthand how complicated it could be. She spotted news of a cutting-edge technology for detecting hazardous substances on MIT's engineering department website (which she checks regularly just to see "if there's anything new," as ABC News reports) then set to work creating Tethys. The device works with carbon nanotube sensors to detect lead levels faster than other current techniques, sending the results to a smartphone app.

As one of 10 finalists for the Young Scientist Challenge, Rao spent the summer working with a 3M scientist to refine her device, then presented the prototype to a panel of judges from 3M and schools across the country.

The contamination crisis in Flint is still ongoing, and Rao's invention could have a significant impact. In March 2017, Flint officials cautioned that it could be as long as two more years until the city's tap water will be safe enough to drink without filtering. The state of Michigan now plans to replace water pipes leading to 18,000 households by 2020. Until then, residents using water filters could use a device like Tethys to make sure the water they're drinking is safe. Rao plans to put most of the $25,000 prize money back into her project with the hopes of making the device commercially available.

[h/t The Cut]

All images by Andy King, courtesy of the Discovery Education 3M Young Scientist Challenge.

nextArticle.image_alt|e
NASA/JPL-Caltech
arrow
Space
More Details Emerge About 'Oumuamua, Earth's First-Recorded Interstellar Visitor
 NASA/JPL-Caltech
NASA/JPL-Caltech

In October, scientists using the University of Hawaii's Pan-STARRS 1 telescope sighted something extraordinary: Earth's first confirmed interstellar visitor. Originally called A/2017 U1, the once-mysterious object has a new name—'Oumuamua, according to Scientific American—and researchers continue to learn more about its physical properties. Now, a team from the University of Hawaii's Institute of Astronomy has published a detailed report of what they know so far in Nature.

Fittingly, "'Oumuamua" is Hawaiian for "a messenger from afar arriving first." 'Oumuamua's astronomical designation is 1I/2017 U1. The "I" in 1I/2017 stands for "interstellar." Until now, objects similar to 'Oumuamua were always given "C" and "A" names, which stand for either comet or asteroid. New observations have researchers concluding that 'Oumuamua is unusual for more than its far-flung origins.

It's a cigar-shaped object 10 times longer than it is wide, stretching to a half-mile long. It's also reddish in color, and is similar in some ways to some asteroids in our solar system, the BBC reports. But it's much faster, zipping through our system, and has a totally different orbit from any of those objects.

After initial indecision about whether the object was a comet or an asteroid, the researchers now believe it's an asteroid. Long ago, it might have hurtled from an unknown star system into our own.

'Oumuamua may provide astronomers with new insights into how stars and planets form. The 750,000 asteroids we know of are leftovers from the formation of our solar system, trapped by the Sun's gravity. But what if, billions of years ago, other objects escaped? 'Oumuamua shows us that it's possible; perhaps there are bits and pieces from the early years of our solar system currently visiting other stars.

The researchers say it's surprising that 'Oumuamua is an asteroid instead of a comet, given that in the Oort Cloud—an icy bubble of debris thought to surround our solar system—comets are predicted to outnumber asteroids 200 to 1 and perhaps even as high as 10,000 to 1. If our own solar system is any indication, it's more likely that a comet would take off before an asteroid would.

So where did 'Oumuamua come from? That's still unknown. It's possible it could've been bumped into our realm by a close encounter with a planet—either a smaller, nearby one, or a larger, farther one. If that's the case, the planet remains to be discovered. They believe it's more likely that 'Oumuamua was ejected from a young stellar system, location unknown. And yet, they write, "the possibility that 'Oumuamua has been orbiting the galaxy for billions of years cannot be ruled out."

As for where it's headed, The Atlantic's Marina Koren notes, "It will pass the orbit of Jupiter next May, then Neptune in 2022, and Pluto in 2024. By 2025, it will coast beyond the outer edge of the Kuiper Belt, a field of icy and rocky objects."

Last month, University of Wisconsin–Madison astronomer Ralf Kotulla and scientists from UCLA and the National Optical Astronomy Observatory (NOAO) used the WIYN Telescope on Kitt Peak, Arizona, to take some of the first pictures of 'Oumuamua. You can check them out below.

Images of an interloper from beyond the solar system — an asteroid or a comet — were captured on Oct. 27 by the 3.5-meter WIYN Telescope on Kitt Peak, Ariz.
Images of 'Oumuamua—an asteroid or a comet—were captured on October 27.
WIYN OBSERVATORY/RALF KOTULLA

U1 spotted whizzing through the Solar System in images taken with the WIYN telescope. The faint streaks are background stars. The green circles highlight the position of U1 in each image. In these images U1 is about 10 million times fainter than the faint
The green circles highlight the position of U1 in each image against faint streaks of background stars. In these images, U1 is about 10 million times fainter than the faintest visible stars.
R. Kotulla (University of Wisconsin) & WIYN/NOAO/AURA/NSF

Color image of U1, compiled from observations taken through filters centered at 4750A, 6250A, and 7500A.
Color image of U1.
R. Kotulla (University of Wisconsin) & WIYN/NOAO/AURA/NSF

Editor's note: This story has been updated.

nextArticle.image_alt|e
iStock
arrow
science
Scientists Analyze the Moods of 90,000 Songs Based on Music and Lyrics
iStock
iStock

Based on the first few seconds of a song, the part before the vocalist starts singing, you can judge whether the lyrics are more likely to detail a night of partying or a devastating breakup. The fact that musical structures can evoke certain emotions just as strongly as words can isn't a secret. But scientists now have a better idea of which language gets paired with which chords, according to their paper published in Royal Society Open Science.

For their study, researchers from Indiana University downloaded 90,000 songs from Ultimate Guitar, a site that allows users to upload the lyrics and chords from popular songs for musicians to reference. Next, they pulled data from labMT, which crowd-sources the emotional valence (positive and negative connotations) of words. They referred to the music recognition site Gracenote to determine where and when each song was produced.

Their new method for analyzing the relationship between music and lyrics confirmed long-held knowledge: that minor chords are associated with sad feelings and major chords with happy ones. Words with a negative valence, like "pain," "die," and "lost," are all more likely to fall on the minor side of the spectrum.

But outside of major chords, the researchers found that high-valence words tend to show up in a surprising place: seventh chords. These chords contain four notes at a time and can be played in both the major and minor keys. The lyrics associated with these chords are positive all around, but their mood varies slightly depending on the type of seventh. Dominant seventh chords, for example, are often paired with terms of endearment, like "baby", or "sweet." With minor seventh chords, the words "life" and "god" are overrepresented.

Using their data, the researchers also looked at how lyric and chord valence differs between genres, regions, and eras. Sixties rock ranks highest in terms of positivity while punk and metal occupy the bottom slots. As for geography, Scandinavia (think Norwegian death metal) produces the dreariest music while songs from Asia (like K-Pop) are the happiest. So if you're looking for a song to boost your mood, we suggest digging up some Asian rock music from the 1960s, and make sure it's heavy on the seventh chords.

SECTIONS

arrow
LIVE SMARTER