Astronomers Observe a New Kind of Massive Cosmic Collision for the First Time

NSF/LIGO/Sonoma State University/A. Simonnet
NSF/LIGO/Sonoma State University/A. Simonnet

For the first time, astronomers have detected the colossal blast produced by the merger of two neutron stars—and they've recorded it both via the gravitational waves the event produced, as well as the flash of light it emitted.

Physicists believe that the pair of neutron stars—ultra-dense stars formed when a massive star collapses, following a supernova explosion—had been locked in a death spiral just before their final collision and merger. As they spiraled inward, a burst of gravitational waves was released; when they finally smashed together, high-energy electromagnetic radiation known as gamma rays were emitted. In the days that followed, electromagnetic radiation at many other wavelengths—X-rays, ultraviolet, optical, infrared, and radio waves—were released. (Imagine all the instruments in an orchestra, from the lowest bassoons to the highest piccolos, playing a short, loud note all at once.)

This is the first time such a collision has been observed, as well as the first time that both kinds of observations—gravitational waves and electromagnetic radiation—have been recorded from the same event, a feat that required co-operation among some 70 different observatories around the world, including ground-based observatories, orbiting telescopes, the U.S. LIGO (Laser Interferometer Gravitational-Wave Observatory), and European Virgo gravitational wave detectors.

"For me, it feels like the dawning of a next era in astrophysics," Julie McEnery, project scientist for NASA's Fermi Gamma-ray Space Telescope, one of the first instruments to record the burst of energy from the cosmic collision, tells Mental Floss. "With this observation, we've connected these new gravitational wave observations to the rest of the observations that we've been doing in astrophysics for a very long time."


The observations represent a breakthrough on several fronts. Until now, the only events detected via gravitational waves have been mergers of black holes; with these new results, it seems likely that gravitational wave technology—which is still in its infancy—will open many new phenomena to scientific scrutiny. At the same time, very little was known about the physics of neutron stars—especially their violent, final moments—until now. The observations are also shedding new light on the origin of gamma-ray bursts (GRBs)—extremely energetic explosions seen in distant galaxies. As well, the research may offer clues as to how the heavier elements, such as gold, platinum, and uranium, formed.

Astronomers around the world are thrilled by the latest findings, as today's flurry of excitement attests. The LIGO-Virgo results are being published today in the journal Physical Review Letters; further articles are due to be published in other journals, including Nature and Science, in the weeks ahead. Scientists also described the findings today at press briefings hosted by the National Science Foundation (the agency that funds LIGO) in Washington, and at the headquarters of the European Southern Observatory in Garching, Germany.

(Rumors of the breakthrough had been swirling for weeks; in August, astronomer J. Craig Wheeler of the University of Texas at Austin tweeted, "New LIGO. Source with optical counterpart. Blow your sox off!" He and another scientist who tweeted have since apologized for doing so prematurely, but this morning, minutes after the news officially broke, Wheeler tweeted, "Socks off!") 

The neutron star merger happened in a galaxy known as NGC 4993, located some 130 million light years from our own Milky Way, in the direction of the southern constellation Hydra.

Gravitational wave astronomy is barely a year and a half old. The first detection of gravitational waves—physicists describe them as ripples in space-time—came in fall 2015, when the signal from a pair of merging black holes was recorded by the LIGO detectors. The discovery was announced in February 2016 to great fanfare, and was honored with this year's Nobel Prize in Physics. Virgo, a European gravitational wave detector, went online in 2007 and was upgraded last year; together, they allow astronomers to accurately pin down the location of gravitational wave sources for the first time. The addition of Virgo also allows for a greater sensitivity than LIGO could achieve on its own.

LIGO previously recorded four different instances of colliding black holes—objects with masses between seven times the mass of the Sun and a bit less than 40 times the mass of the Sun. This new signal was weaker than that produced by the black holes, but also lasted longer, persisting for about 100 seconds; the data suggested the objects were too small to be black holes, but instead were neutron stars, with masses of about 1.1 and 1.6 times the Sun's mass. (In spite of their heft, neutron stars are tiny, with diameters of only a dozen or so miles.) Another key difference is that while black hole collisions can be detected only via gravitational waves—black holes are black, after all—neutron star collisions can actually be seen.


When the gravitational wave signal was recorded, on the morning of August 17, observatories around the world were notified and began scanning the sky in search of an optical counterpart. Even before the LIGO bulletin went out, however, the orbiting Fermi telescope, which can receive high-energy gamma rays from all directions in the sky at once, had caught something, receiving a signal less than two seconds after the gravitational wave signal tripped the LIGO detectors. This was presumed to be a gamma-ray burst, an explosion of gamma rays seen in deep space. Astronomers had recorded such bursts sporadically since the 1960s; however, their physical cause was never certain. Merging neutron stars had been a suggested culprit for at least some of these explosions.

"This is exactly what we'd hoped to see," says McEnery. "A gamma ray burst requires a colossal release of energy, and one of the hypotheses for what powers at least some of them—the ones that have durations of less than two seconds—was the merger of two neutron stars … We had hoped that we would see a gamma ray burst and a gravitational wave signal together, so it's fantastic to finally actually do this."

With preliminary data from LIGO and Virgo, combined with the Fermi data, scientists could tell with reasonable precision what direction in the sky the signal had come from—and dozens of telescopes at observatories around the world, including the U.S. Gemini telescopes, the European Very Large Telescope, and the Hubble Space Telescope, were quickly re-aimed toward Hydra, in the direction of reported signal.

The telescopes at the Las Campanas Observatory in Chile were well-placed for getting a first look—because the bulletin arrived in the morning, however, they had to wait until the sun dropped below the horizon.

"We had about eight to 10 hours, until sunset in Chile, to prepare for this," Maria Drout, an astronomer at the Carnegie Observatories in in Pasadena, California, which runs the Las Campanas telescopes, tells Mental Floss. She was connected by Skype to the astronomers in the control rooms of three different telescopes at Las Campanas, as they prepared to train their telescopes at the target region. "Usually you prepare a month in advance for an observing run on these telescopes, but this was all happening in a few hours," Drout says. She and her colleagues prepared a target list of about 100 galaxies, but less than one-tenth of the way through the list, by luck, they found it: a tiny blip of light in NGC 4993 that wasn't visible on archival images of the same galaxy. (It was the 1-meter Swope telescope that snagged the first images.)


When a new star-like object in a distant galaxy is spotted, a typical first guess is that it's a supernova (an exploding star). But this new object was changing very rapidly, growing 100 times dimmer over just a few days while also quickly becoming redder—which supernovae don't do, explains Drout, who is cross-appointed at the Dunlap Institute for Astronomy and Astrophysics at the University of Toronto. "We ended up following it for three weeks or so, and by the end, it was very clear that this [neutron star merger] was what we were looking at," she says.

The researchers say they can't be sure if the resulting object was another, larger neutron star, or whether it would have been so massive that it would have collapsed into a black hole.

As exciting as the original detection of gravitational waves last year was, Drout is looking forward to a new era in which both gravitational waves and traditional telescopes can be used to study the same objects. "We can learn a lot more about these types of extreme systems that exist in the universe, by coupling the two together," she says.

The detection shows that "gravitational wave science is moving from being a physics experiment to being a tool for astronomers," Marcia Rieke, an astronomer at the University of Arizona who is not involved in the current research, tells Mental Floss. "So I think it's a pretty big deal."

Physicists are also learning something new about the origin of the heaviest elements in the periodic table. For many years, these were thought to arise from supernova explosions, but spectroscopic data from the newly observed neutron star merger (in which light is broken up into its component colors) suggests that such explosion produce enormous quantities of heavy elements—including enough gold to put Fort Knox to shame. (The blast is believed to have created some 200 Earth-masses of gold, the scientists say.) "It's telling us that most of the gold that we know about is produced in these mergers, and not in supernovae," McEnery says.

Editor's note: This post has been updated.

11 Things You Might Not Know About Neil Armstrong

NASA/Hulton Archive/Getty Images
NASA/Hulton Archive/Getty Images

No matter where private or government space travel may take us in the future, NASA astronaut Neil Armstrong (1930-2012) will forever have a place as the first human to ever set foot on solid ground outside of our atmosphere. Taking “one small step” onto the moon on July 20, 1969, he inspired generations of ambitious people to reach for the stars in their own lives. And ow, he's inspired a new biopic, First Man, which will see Ryan Gosling re-team with his La La Land director Damien Chazelle as it arrives in theaters this weekend.


Neil Armstrong poses for a portrait 10 years before the 1969 Apollo mission
NASA/Hulton Archive/Getty Images

Born August 5, 1930 in Wapakoneta, Ohio, Armstrong became preoccupied with aviation early on. At around age 6, his father took him on a ride in a Ford Trimotor airplane, one of the most popular airplanes in the world. By age 15, he had accumulated enough flying lessons to command a cockpit, reportedly before he ever earned his driver’s license. During the Korean War, Armstrong flew 78 combat missions before moving on to the National Advisory Committee for Aeronautics (NACA), the precursor to NASA.


When Armstrong and Buzz Aldrin touched down on the moon, hundreds of millions of television viewers were riveted. Armstrong could be heard saying, “That’s one small step for man, one giant leap for mankind.” But that’s not exactly what he said. According to the astronaut, he was fairly sure he stated, “That’s one small step for a man, one giant leap for mankind.” The “a” may have broken up on transmission or it may have been obscured as a result of his speaking patterns. (According to First Man: The Life of Neil A. Armstrong, Armstrong said, “I’m not particularly articulate. Perhaps it was a suppressed sound that didn’t get picked up by the voice mike. As I have listened to it, it doesn’t sound like there was time for the word to be there. On the other hand, I think that reasonable people will realize that I didn’t intentionally make an inane statement, and certainly the ‘a’ was intended, because that’s the only way the statement makes any sense. So I would hope that history would grant me leeway for dropping the syllable and understand that it was certainly intended, even if it wasn’t said—although it actually might have been.”) Armstrong claimed the statement was spontaneous, but his brother and others have claimed he had written it down prior to the mission.


Buzz Aldrin is seen walking on the moon
NASA/Hulton Archive/Getty Images

One of the most celebrated human achievements of the 20th century came at a time when video and still cameras were readily available—yet there are precious few images of Armstrong actually walking on the surface of the moon. (One of the most iconic shots, above, is Aldrin; Armstrong only appears as a reflection in his helmet.) The reason, according to Armstrong, is that he really didn’t care and didn’t think to ask Aldrin to snap some photos. “I don't think Buzz had any reason to take my picture, and it never occurred to me that he should,” Armstrong told his biographer, James R. Hansen. “I have always said that Buzz was the far more photogenic of the crew."


Theories abound as to why it was Armstrong and not Buzz Aldrin who first set foot on the moon. (On the Gemini missions, the co-pilot did the spacewalks, while the commander stayed in the craft. For Apollo 11, Armstrong was the commander.) The answer may have been the simple logistics of getting out of their lunar module. The exit had a right hinge that opened inwardly, with the man sitting on the left (Armstrong) having the most unobstructed path to the outside. Aldrin would have essentially had to climb over Armstrong to get out first.


The lunar module that took NASA astronauts to the moon
NASA/Hulton Archive/Getty Images

The romantic notion of a human stepping foot on space soil captured imaginations, but for Armstrong, it was getting there in one piece that was the real accomplishment. The lunar module Armstrong controlled had to be brought down on the moon’s surface from 50,000 feet up, avoiding rocks, craters, and other obstacles as it jockeyed into a position for landing. Because there is no air resistance, nothing could slow their descent, and they used thrusters to guide the craft down. That meant there was only enough fuel to attempt it once. The “business” of getting down the ladder was, in Armstrong’s view, less significant.


When Armstrong surveyed the surface of the moon, he collected a bag of dust for NASA scientists to examine. Apollo moon samples are illegal to buy or sell, but that apparently wasn't the case with the “lunar collection bag” Armstrong used to hold the samples. In 2015, the bag was purchased by Chicago resident Nancy Lee Carlson from a government auction site for $995. But its sale was, apparently, an accident: When Carlson sent the bag to NASA to confirm its authenticity, NASA said it was their property and refused to send it back—so Carlson took the agency to court. A judge ruled it belonged to Carlson, and in 2017, she sold the bag for a whopping $1.8 million at a Sotheby’s auction.


Richard Nixon greets the returning Apollo 11 astronauts
NASA/Hulton Archive/Getty Images

When Armstrong, Aldrin, and Michael Collins (who remained behind in the command module while the other two touched down on the moon) returned to Earth and were fetched by the USS Hornet, they got a king’s welcome. The only asterisk: They had to bask in their newfound fame from inside a sealed chamber. All three men were quarantined for three weeks in the event they had picked up any strange space virus. When President Richard Nixon visited, he greeted them through the chamber’s glass window.


Yes, the undergarment people. In the early 1960s, NASA doled out contract work for their space suits to government suppliers, but it was Playtex (or more properly the International Latex Corporation) and their understanding of fabrics and seams that led to NASA awarding them responsibility for the Apollo mission suits. Their A7L suit was what Armstrong wore to insulate himself against the harsh void of space when he made his famous touchdown. The astronaut called it “reliable” and even “cuddly.”


Newil Armstrong sits behind a desk in 1970
AFP/Getty Images

Following his retirement from NASA in 1971, Armstrong was reticent to remain in the public eye. Demands for his time were everywhere, and he had little ambition to become a walking oral history of his singular achievement. Instead, he accepted a job as a professor of engineering at the University of Cincinnati and remained on the faculty for eight years.


Hallmark was forced to defend itself when Armstrong took issue with the company using his name and likeness without permission for a 1994 Christmas ornament. The bulb depicted Armstrong and came with a sound chip that said phrases like, “The Eagle has landed.” The two parties came to an undisclosed but “substantial” settlement in 1995, which was, according to First Man, donated to Purdue University (minus legal fees).


Armstrong’s preference to lead a private life continued over the decades, but he did make one notable exception. For a 1979 Super Bowl commercial spot, Armstrong agreed to appear on camera endorsing Chrysler automobiles. Armstrong said he did it because he wanted the struggling U.S. car maker to improve their sales and continue contributing to the domestic economy. The ads never mentioned Armstrong was an astronaut.

17 Facts About the Apollo Program

NASA/Getty Images
NASA/Getty Images

NASA was officially established in October 1958. Just two years later, the agency started what would become one of the defining programs of the 20th century—Apollo, which put humans on the Moon in 1969. In honor of NASA's 60th anniversary, and the upcoming 50th anniversary of the Moon landing, here are 17 facts about the Apollo program.


When NASA and the Space Task Group were brainstorming names for their first manned satellite project, they favored “Project Astronaut,” which they believed would “emphasize the man in the satellite.” According to NASA, that name was eventually discarded “because it might lead to overemphasis on the personality of the man.” Mercury was chosen instead: Thanks to its use in thermometers and automobile branding, it was familiar to the American public. The Roman god's role as a messenger was also appealing [PDF]. The program would go on to make six manned flights between 1961 and 1963, taking us from Alan Shepard’s 15-minute flight to L. Gordon Cooper’s 34 hours in space.

As NASA began looking beyond Mercury missions, they recognized that a mythological naming convention had been established. Dr. Abe Silverstein, NASA's director of space flight programs, suggested the Greco-Roman god Apollo—which might seem like an odd choice for a lunar program, considering Apollo is traditionally associated with the Sun rather than the Moon. But Silverstein supposedly felt that the image of “Apollo riding his chariot across the Sun was appropriate to the grand scale of the proposed program.”

According to The New York Times, however, Silverstein would later say there was “No specific reason for it ... It was just an attractive name.”


The original intent of the program wasn't actually a lunar landing. When it was announced in 1960, Project Apollo’s goal was to send a three-man crew to orbit the Moon, not land on it. It wasn’t until May 1961 that President John F. Kennedy delivered his famous speech declaring that “this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth.”

It was an ambitious plan: At the time Kennedy made his announcement, only two people had ever been in space. In addition to Soviet cosmonaut Yuri Gagarin in April 1961, and Alan Shepard a month later, other animals that had made it to space included fruit flies, monkeys, dogs, and a chimpanzee.


In 1967, astronauts Virgil Grissom, Edward White, and Roger Chaffee were conducting a preflight test—where the command module was mounted as it would be for a launch, but nothing was fueled up—for what was known as mission AS-204 when a fire broke out, killing the three astronauts. The decision was made to honor the astronauts by referring to the never-completed flight as Apollo 1—but this left open the question of what to call the next flight.

One solution was to call the next flight Apollo 2. Another option proposed was to retroactively designate three earlier flights (AS-201, 202, and 203) as Apollo 1-A, Apollo 2, and Apollo 3, even though these flights launched before the fire. The reason for the suggestion wasn't evident even to NASA. As the agency explained, “the sequence of, and reasoning behind, mission designations has never been really clear to anyone.”

Eventually, according to NASA’s history, the never-launched flight “would be officially recorded as Apollo 1, ‘first manned Apollo Saturn flight—failed on ground test.’ AS-201, AS-202, and AS-203 would not be renumbered in the ‘Apollo’ series, and the next mission would be Apollo 4.”


The control room for the launch of Apollo 4.
Keystone/Getty Images

Apollo 4—an unmanned mission that served as a test of the 363-foot-tall Saturn V rocket—was the first ever launch at NASA's Kennedy Space Center in Florida, when it occurred on November 9, 1967. The liftoff was so loud (according to NASA, one of the loudest manmade noises ever) that it shook buildings as far as three miles away, causing dust and debris to fall from the ceiling of the control center (above). "I hope the Vehicle Assembly Building (VAB) doesn't get any cracks," Dr. Hans Greune, director of Kennedy Launch Vehicle Operations, said after the launch. "It rattled pretty hard and a cheer went up in the control room after liftoff." The launchpad lacked a sound suppression system—but by the time the Space Shuttle was in use, more than 300,000 gallons of water were sprayed out in just 41 seconds to dampen its sound to acceptable levels.

The mission, which was successful, was designed to test the structural and thermal integrity of the craft and to evaluate various support facilities.


The uncrewed Apollo 5 was designed to test the operation of the lunar module, and it was mostly a success (there were concerns with the water boiler temperature). Apollo 6 was also unmanned, but had many more issues. For 30 seconds it experienced something called the “pogo effect” (which Popular Science explains is “almost like the rocket is bouncing on a pogo stick”)—something that NASA pointed out “would have been very uncomfortable for any crew.” Then two of the engines shut down, and the third stage wouldn't restart. Despite all these setbacks, Apollo 6 never made national headlines. On the day of the disastrous flight, Martin Luther King. Jr. was assassinated in Tennessee. “About the only explaining that NASA had to do, therefore, was to the congressional committees on space activities, who seemed satisfied with what they heard,” NASA explains.


Apollo 7 was a mission of firsts: It marked the first Apollo mission that sent people to space, as well as the first live television transmissions from space. During the transmissions—which were called the “Wally, Walt, and Donn Show”—astronauts Walter Schirra, R. Walter Cunningham, and Donn Eisele gave a tour of the vehicle and cracked a few jokes. Schirra even commented that he was “going to try for an Emmy for the best weekly series,” to which the ground crew responded, “I thought you were going to try for a Hammy” [PDF].

In a way, Schirra did get his wish: In 1969, Apollos 7, 8, 9, and 10—all of which made broadcasts back to Earth—received a special Trustees Award from the National Academy of Television Arts and Sciences.


On Christmas Eve 1968, Apollo 8 astronauts Frank Borman, Jim Lovell, and Bill Anders circled the Moon and snapped the famous Earthrise photo. They were also told to do “something appropriate” to honor the event for the millions who were listening to them. They decided to recite from Genesis. "It's a foundation of Christianity, Judaism and Islam," Lovell said of the choice. "They all had that basis of the Old Testament."

Famous atheist Madalyn Murray O’Hair—sometimes referred to as “the most hated woman in America”—sued, alleging her First Amendment rights had been violated. Ultimately, the judge dismissed the suit and the Supreme Court declined to hear it due to lack of jurisdiction. But it did have an effect on later missions—according to Buzz Aldrin’s memoirs, he had intended to read a communion passage back to Earth during Apollo 11, but at the last moment was asked not to because of Apollo 8’s legal challenges.


Buzz Aldrin poses next to an American flag on the surface of the Moon.
NASA/Liaison/Getty Images

Raising the American flag on the Moon turned out to be a controversial move. In his 1969 inaugural address, President Nixon had proclaimed that we should “go to the new worlds together—not as new worlds to be conquered, but as a new adventure to be shared.” That spirit of shared exploration led some at NASA to discuss putting a United Nations flag on the Moon. At the same time, some had concerns over the visual effect of planting an American flag on the Moon, which they believed could make it look like the Americans were taking control of the Moon (which would have been a violation of the Outer Space Treaty). Eventually, however, the committee decided to plant the American flag and also leave a plaque to emphasize that they “came in peace for all mankind.”

The flag debate would be settled in no uncertain terms later in 1969, when NASA’s appropriation bill proclaimed “the flag of the United States, and no other flag, shall be implanted or otherwise placed on the surface of the Moon, or on the surface of any planet, by the members of the crew of any spacecraft making a lunar or planetary landing as a part of a mission under the Apollo program or as a part of a mission under any subsequent program, the funds for which are provided entirely by the Government of the United States.” Mindful of the Outer Space Treaty, the bill made sure to note that “This act is intended as a symbolic gesture of national pride in achievement and is not to be construed as a declaration of national appropriation by claim of sovereignty.”


There are two possible sources for the Apollo 11 flag—and neither of them involve anything high-tech. Originally, NASA proclaimed that the “Stars and Stripes to be deployed on the Moon was purchased along with several others made by different manufacturers” in Houston-area stores. When it was affixed to the pole and crossbar that would be planted in the Moon dust, all labels and identifying information were removed.

Not long after the Moon landing, according to a NASA Contractor Report on the Lunar Flag, the head of flag manufacturer Annin & Co. asked if the flag was one of theirs. He was told that "three secretaries had been sent out to buy 3x5-foot nylon flags during their lunch hours. After they had returned it was discovered that all of them had purchased their flags at Sears."

Annin was the official flag supplier to Sears, but not wanting “another Tang”—a reference to the free publicity Tang received from NASA after John Glenn drank an orange liquid from a pouch on Friendship 7—they refused to confirm the manufacturer.

Jack Kinzler, a NASA executive, was unable to verify any of this information, though; his notes suggest that the flag was purchased from the Government Stock Catalog for $5.50.


Even a guy on the work trip of a lifetime had to fill out some paperwork afterward: Once he was back on Earth, post-successful moonwalk, Aldrin filed a travel voucher totaling $33.31. "To: Cape Kennedy, Fla. Moon Pacific Ocean (USN Hornet)," it read.


Astronauts Pete Conrad, Richard F Gordon Jnr, and Alan L Bean getting ready to go to the moon on the Apollo 12 mission.
Hulton Archive/Getty Images

Just 36 seconds after liftoff on November 14, 1969, the astronauts on Apollo 12—Alan Bean, Charles "Pete" Conrad, and Richard Gordon, Jr.—felt something strange. Then, things began to go wrong. The craft had been struck by lightning twice, at 36 seconds after takeoff and again at 52 seconds. Though no one in the crew or on the ground realized what had happened, the three men were calm and waited it out. Bean would later say that “One of the rules of space flight is you don't make any switch-a-roos with that electrical system unless you've got a good idea why you're doing it. I knew we had power, so I didn't want to make any changes. I figured we could fly into orbit just like that.” Eventually, he reset the electrical systems, and after 25 minutes, those systems and the fuel cells were back up and running. But the crew still had to fire its main engine to leave Earth's orbit and head for the Moon—and the automated navigation was busted. Gordon used a sextant, and Bean broke out a star chart to help them figure out where to go. And they made it.

The next Apollo mission may be the most famous, besides 11, because of its own problems—and an oxygen tank intended for Apollo 10 (Apollo 13’s Jim Lovell would later congratulate the Apollo 10 crew for getting rid of it). The tank, 10024X-TA0009, was one of two set for the earlier Apollo mission, but problems with pumps meant all the tanks needed modification. In the removal of this particular tank, it caught on a bolt and fell two inches—but because it was felt that no damage occurred, everyone moved on, and the tank was installed in the spacecraft soon to be known as Apollo 13.

During testing before the flight, technicians noted that the tank had difficulties emptying. To boil off the remaining liquid oxygen the electric heater inside the tank was plugged into 65-volt power for eight hours, with the nearby wires being subjected to 1000°F temperatures. It would later be discovered that using 65-volt power severely damaged the tank’s thermostatic switches, which were designed for 28 volts (NASA explains that in 1965, the permissible voltage to the heaters was raised to 65 volts, but the thermostatic switch manufacturer never got the memo). This internal damage likely resulted in a spark that destroyed the tank, leading to the legendary saying "Houston, we've had a problem” [PDF] and, in 1995, an award-winning movie.


When Apollo 12 landed on the Moon, it was right next to the lander from 1967’s Surveyor 3. The astronauts grabbed parts from the craft—including a camera—to study the effects of years on the lunar surface.

Researchers hadn’t sterilized Surveyor 3, and when the camera was opened in a clean room back on Earth, a small colony of Streptococcus mitis was discovered. These bacteria had apparently survived almost three years without nutrients in freezing space and the finding, which frequently gets discussed on the internet, was hailed as a remarkable discovery.

Sadly, researchers have recently returned to the Surveyor 3 camera and learned that the claim was, at best, unconvincing. One problem was that the people studying the camera were wearing short sleeves, meaning post-recovery contamination was a very real possibility—though the researchers caution “proving the truth in such a situation is difficult, if not impossible” [PDF].

Microbes or no, there's still an important takeaway from the situation: It demonstrated the potential issues that could arise with future samples returning from places like Mars.


Apollo 15 Astronaut James Irwin on the moon with a moon buggy.
Keystone/Getty Images

Apollo 15, the fourth mission to put human boots on the Moon, brought along a first-of-its-kind, 460-Earth-pound Lunar Rover Vehicle (LRV) that was about the size of a dune buggy. Astronauts David Scott and James Irwin became the first people to drive on the surface of another world, and the LRV—which had a top speed of 8 mph—allowed them to travel farther from their landing site than any previous astronauts. "The LRV on Apollo fulfilled a very important need, which was to be able to cover large traverses, carry more samples, and get more scientific exploration done," Mike Neufeld, a senior curator at the Smithsonian National Air and Space Museum in Washington, D.C., told in 2011. "It was a really important part of why Apollo 15, 16, and 17 were so much more scientifically advanced and productive." Scott and Irwin traveled around 17 miles in the LRV. The design of the vehicles—and their experiences on the Moon—helped inform the design of the rovers that went to Mars.


Of the 12 men who have walked on the Moon, geologist Harrison Schmitt was the only scientist. He had a reaction to lunar regolith, or Moon dust. Schmitt said the dust caused “a lot of irritation to my sinuses and nostrils soon after taking the helmet off ... the dust really bothered my eyes and throat. I was tasting it and eating it.” He joked that he had “lunar dust hay fever.” Apollo 17 would go on to collect 741 rock and soil samples—more than any other Apollo mission.


The post-space careers of the Apollo astronauts is varied—Michael Collins was the first director of the National Air and Space Museum, for instance. Harrison Schmitt became a senator from New Mexico. James B. Irwin founded an evangelical organization, while Edgar Mitchell researched psychic phenomenon.

But the astronaut to have the most interesting job post-Moonwalk might be Buzz Aldrin, who told CNN, “Most people who have received a degree of public recognition find themselves financially pretty well off. Doesn't happen to be the case with astronauts.” And so he found himself working for a Cadillac dealership in Beverly Hills—though by his own admission he wasn’t very good at it. He explained in his memoir Magnificent Desolation, “I was a terrible salesman ... People came onto the lot in search of a car, and as soon as I struck up a conversation with them, the subject immediately turned from the comfort and convenience of a new or used luxury automobile to space travel. I spent more time signing autographs than anything else ... In fact, I didn’t sell a single car the entire time I worked at [the dealer].”


One of the most lasting contributions of Apollo 11 was a 2-foot-wide panel consisting of 100 mirrors. Similar objects were left by Apollos 14 and 15, as well as Soviet rovers. Called the Lunar Laser Ranging Retroreflector experiment, it is "the only Apollo experiment that is still returning data from the Moon,” according to the Lunar and Planetary Institute. The experiment works by shooting a laser at the mirror and waiting for the reflection—but as anyone who has shined a laser pointer knows, while they don’t disperse as much as other light sources, lasers still disperse. In the case of the Moon, the laser is 4.3 miles in diameter when it hits the Moon, and 12.4 miles wide when it returns to Earth. But thanks to the program we’ve been able to learn that the Moon is moving roughly 1.5 inches away from the Earth every year, and gain new insights into Einstein’s Theory of General Relativity.


It’s often said that we’ve never returned to the Moon after Apollo. That’s not quite true—in 2016, China’s Yutu rover ceased operations after spending 31 months on the Moon. But humans haven’t returned, and that may be a problem.

In 2012, Ian Crawford of Birkbeck College London wrote a paper arguing that human space travel has its benefits over robotic exploration. For one, “human missions like Apollo are between two and three orders of magnitude more efficient in performing exploration tasks than robotic missions, while being only one to two orders of magnitude more expensive” [PDF]. The paper also points out that missions like Apollo are funded and undertaken for a wide range of sociopolitical reasons, and humanity can benefit in many ways.

Not everyone is convinced. Some critics argue that autonomous robots, with their rapidly improving abilities, are the better option. It’s a question with serious implications for the future of space exploration.