Grass-Fed Beef Is Actually Worse for the Planet, Report Finds


There are plenty of reasons to reject factory farming, but in the case of beef, your carbon footprint shouldn’t be one of them. According to EcoWatch, new research shows that grazed cattle provide an outsized contribution to greenhouse gasses, as opposed to cattle kept largely indoors and fed on grain.

The report [PDF], released by Oxford’s Food Climate Research Network, aims to provide definitive answers to what has been a heavily debated topic in environmental circles. Some research has found that grazing cattle actually reduces the carbon footprints of beef operations, because all that pasture stores carbon and prevents it from being released into the atmosphere, and because all that chomping stimulates new vegetation growth. Other research has found that the benefits aren’t as great as the grass-fed boosters estimate—especially since the fields of grain used to grow cattle feed for factory farms sequester carbon, too.

The new Oxford research comes down firmly on the side of the latter camp. It finds that while grass-fed operations can help sequester carbon, it’s “only under very specific conditions,” in part since the definition of what a grassland is can vary wildly. There are natural ranges dominated by wild vegetation, there are pastures that are actively maintained and managed by farmers, and there is land that lies somewhere in between. Overgrazing, trampling, and soil conditions can all negatively impact how much carbon the grasses can sequester. And even under the best conditions, the gains can be short-lived. “This sequestering of carbon is even then small, time-limited, reversible, and substantially outweighed by the greenhouse gas emissions these grazing animals generate,” according to FCRN.

And it seems that even if the vegetation does sequester carbon, grass-fed beef is still an outsized source of greenhouse gasses.

To begin with, all cattle are a huge drain on the environment, no matter how you feed them. The report estimates that the livestock supply chain generates around 14.5 percent of global greenhouse gas emissions, and cattle create 65 percent of those livestock emissions. But even compared to cattle in general, grass-fed animals are heavy polluters. Within the global protein supply, grass-fed beef makes up around 1 gram of protein per person, per day, compared to 13 grams from all ruminants (cattle, sheep, goats, etc.). But these grazed cattle generate up to a third of all global greenhouse emissions from ruminants. In other words, grass-eating cattle create an outsized cost—emissions-wise—compared to the meat they provide.

And the carbon sequestration doesn't help enough to offset that. The report estimates that the carbon sequestration that might occur from grazing practices would only offset emissions by 20 percent.

There are other reasons to buy grass-fed beef, of course, whether it’s about ethical concerns with factory farming or just a taste preference. But if you’re going to choose grass-fed, your reason shouldn’t be concern for the environment.

[h/t EcoWatch]

Joe Raedle, Getty Images
Why Scientists Are Hunting Down Iguanas in Florida
Joe Raedle, Getty Images
Joe Raedle, Getty Images

In South Florida, iguanas had better watch their backs. That's because scientists are on an unusual hunt to kill them, with the help of captive bolt guns and a $63,000 research grant, according to the Sun Sentinel.

It's not as cruel as it might seem at first glance. The green iguana, native to Central and South America, is an invasive species in Florida. The large lizards—which can grow up to 6 feet long—first made it to Florida in the 1960s, and as their population has exploded, they have expanded farther north. The reptiles damage roads, sidewalks, sea walls, and flood-control canals with their burrows; chomp their way through landscaping; spread Salmonella, largely by pooping in people's backyard pools; and compete with the endangered Miami blue butterfly for precious food resources.

The population boom has caused an uptick in complaints from residents, Florida Fish and Wildlife's Sarah Funck told the Sun Sentinel in 2017, pushing the state to find new strategies to deal with the reptiles. One approach? Hire scientists to hunt them down and kill them.

As part of the Florida Fish and Wildlife research project, 15 University of Florida biologists have been tasked with executing as many iguanas as possible in Broward County (home to Fort Lauderdale and parts of the Miami metropolitan area), setting out in teams of two at night. Armed with flashlights and captive bolt guns—which are often used on animals in slaughterhouses and are considered a humane way of killing an animal instantly and painlessly—the researchers attempt to sneak up on sleeping lizards and shoot them before they can scurry away. They also sometimes dispatch the iguanas by smashing their heads against a hard surface, including the side of a truck or a boat.

They've exterminated 249 lizards so far. They take the dead animals back to the lab to be weighed and measured for their dataset, then deposit the carcasses in a landfill. The iguana killing spree is expected to last into May.

While they have tried trapping the iguanas in county parks, they haven't succeeded in capturing any with that method.

As part of the Fish and Wildlife Conservation Commission's iguana-eradicating efforts, the agency has also been hosting public workshops on how to deter and trap iguanas and has hired a dedicated trapper to control populations on public lands in the Florida Keys. 

[h/t Sun Sentinel]

©AMNH/R. Mickens
7 Technologies That Are Revolutionizing Ocean Exploration
©AMNH/R. Mickens
©AMNH/R. Mickens

The Earth is an ocean planet—more than 70 percent of the surface is covered by seawater. But despite being such an essential part of life, the deepest parts of the world's oceans are still largely unexplored. According to the American Museum of Natural History in New York, merely 10 to 15 percent of the seafloor has been mapped with accuracy, which means we know less about the seafloor than the surface of Mars.

But the state of sea exploration is changing fast. The dark, high-pressure conditions of the ocean depths that once made research there impossible are now being explored with cutting-edge technology. That new tech and the discoveries to come from it are the focus of a new exhibition at the American Museum of Natural History called Unseen Oceans. As museum curator John Sparks said at a press preview, the goal of the exhibition is to show visitors "how little we know, and to tell them how much we're learning so rapidly with technology."

Here are some of the technologies featured in the exhibition, which opens March 12.


One of the biggest recent discoveries made in the field of deep ocean exploration is the proliferation of biofluorescence in the darkest parts of the sea. Realms that look pitch black to human eyes are actually filled with more than 250 species of fish glowing in red, orange, and green hues. One of these species is the catshark, which fluoresces green in the dim blue light that reaches the sea floor. To detect this effect, researchers built a camera that filters out certain wavelengths of light like the shark's eye does. (This is how the sharks see each other in the darkness.) Combined with artificial blue light to enhance the fluorescent color, this equipment allows scientists to record the light show.


Listening to whales vocalize tells us a lot about the way they live and interact, but this is difficult to do when a species spends most of its time in the deep ocean. In order to eavesdrop on beaked whales, scientists needed to fit sophisticated acoustic equipment into a submersible built to explore high-pressure environments. Enter the Deep Ocean REMUS Echosounder, or DOR-E. (REMUS stands for "Remote Environmental Monitoring UnitS.") Developed by marine scientist Kelly Benoit-Bird and her team at the Monterey Bay Aquarium Research Institute, the autonomous underwater vehicle can reach depths up to 1970 feet and has enough battery life to record a day's worth of deep-sea audio. The device was named for Finding Nemo's Dory because it "speaks whale," according to Unseen Oceans.


Family looking at museum exhibit
©AMNH/D. Finnin

Collecting specimens at the bottom of the ocean isn't as simple as collecting them on land; researchers can't just step out of their submersible to pick up a mollusk from the seabed. The only way to retrieve a sample at such depths is with a machine. When these machines are designed to be bulky and rigid to withstand the intense water pressure around them, they can end up crushing the specimen before scientists have the chance to study it. So-called soft grippers are a clever alternative. Memory foam evenly distributes the force around the creature being handled, and Kevlar lace keeps the fingers from spreading when they inflate with water. Even with its squishy construction, the mechanism is sturdy enough to work at depths reaching 1000 feet.


A remotely operated vehicle (ROV) can explore the tight, crushing pockets of the ocean that human divers can't reach. This technology is often costly and limited to research teams with big budgets. A new company called OpenROV aims to make underwater drones more accessible to everyday explorers. Their signature ROV, Trident, starts at just $1500.


Topography exhibit in museum.
©AMNH/D. Finnin

Sometimes the easiest way for scientists to get a view of the bottom of the ocean is by sending equipment to space. Satellites in orbit can estimate measurements of the peaks and valleys shaping the seabed by beaming radar pulses towards Earth and calculating the time it takes for them to bounce back. While this method doesn't provide a terribly accurate map of the ocean floor, it can be used to gauge depths in even the most remote areas.


Autonomous undersea robots come in all shapes and sizes. Mini-autonomous underwater explorers, or m-AUEs, developed by Scripps oceanographer Jules Jaffe are meant to be deployed in large groups or "swarms." The grapefruit-sized devices act like plankton, bobbing at a constant depth in the ocean and measuring factors like water temperature. By studying the underwater explorers, scientists hope to better understand how plankton, major contributors of the Earth's oxygen, thrive and travel through the sea.


Kids looking at museum exhibit.
©AMNH/R. Mickens

This technology is so new, it hasn't hit the water yet. Once it's ocean-ready, researchers plan to attach the miniature suction cups to the bells of jellies. The device automatically measures a jelly's movements and ocean chemistry as the animal swims around. Eventually the jelly regenerates the top layer of its bell, shedding the tag and moving on unharmed. Once detached, the tag floats to the water's surface where it alerts scientists to its location via a VHF antenna and green reflective tape.


More from mental floss studios