CLOSE
Original image
Cassini captured this sublime image of Saturn four days before it plunged into the planet's atmosphere.
NASA/JPL-Caltech/Space Science Institute

Inside the Mission to Intentionally Destroy the Cassini Spacecraft

Original image
Cassini captured this sublime image of Saturn four days before it plunged into the planet's atmosphere.
NASA/JPL-Caltech/Space Science Institute

In September, the Cassini spacecraft ended 20 years of space exploration with a fatal dive into the atmosphere of Saturn. Mental Floss contributor David W. Brown was there at NASA Jet Propulsion Laboratory (JPL), in Pasadena, California, to give us a behind-the-scenes look at Cassini's final hours—and delve into the history of the spectacularly successful mission, which provided virtually everything we know about Saturn, its moons, and the potential for life in the planetary system. You probably saw the headlines. Here's the inside look—and the big picture.

 

Hours before Cassini plunged into Saturn on September 15, Dave Doody, a senior engineer at NASA’s Jet Propulsion Laboratory in California, sat at the Ace console in mission control and eyed a computer screen lined with codes. A few were highlighted in orange, but all were indecipherable for the uninitiated. The room was dimly lit in blue and red, with bright projections overhead of Deep Space Network transmission operations and spacecraft status.

Cassini’s final downlink was in process, sent from the Saturn system, some 750 million miles away, to the Goldstone 70-meter antenna an hour and a half northeast of JPL. Engineers were watching closely as telemetry data arrived. “There are 13,000 different measurements. Temperature, pressure, computer state, voltages, and so on,” Doody explained. The desk around him—the closest thing to a cockpit for a robotic mission—was littered with binders, computers, coffee cups, Post-its, pencils, and paperwork. A sign hung on the front of it: NOTICE: DO NOT FEED THE ACE. (Scrawled below: “to the wolves.“) “The programs we are running here are sorting through them all and letting us know with an orange blob if anything is out of spec.”

Returns from the science payload were, as usual, transmitted to the various responsible science instrument teams at universities and research institutions around the world. But the next day, it would all go dark: The team had preprogrammed the spacecraft, which was nearly out of fuel, for a suicide mission into Saturn’s atmosphere. Cassini had less than six hours to live.

As Doody studied the data, another controller reached over and pointed out what might be an anomaly. Doody pulled out his cell phone. Would it have to be called in to the other engineers? The two men discussed it, and teased some deeper obscure truth from the subsequent statistics. Doody pocketed his phone. No cause for alarm today.

I asked Doody what would happen to the spacecraft tomorrow as it absorbed the punishment of a world comprised entirely of heat and pressure. Would those 13,000 measurements freak out one by one, or all at once? I imagined Doody’s face glowing orange with proliferating blobs as Cassini’s systems began to fail.

To my surprise, he explained that it would be a quiet day at the office. The most prominent indicator of Cassini’s impending demise would probably be its overactive thrusters. “We’ll see an excessive thruster alarm because the spacecraft is firing its thrusters to try to keep on point. It’s going to be overcome by the forces of Saturn’s atmosphere, and when it tumbles, we will lose all data.”

He furrowed his brow, thought for a moment, and then proposed a second possible indicator. “If we could stay pointing to Earth and sending data back, we would see temperatures go out of whack, because as we got lower and lower and lower, it would heat up too much,” he said. “But it will definitely lose signal first.”

At the speed of light, it takes 83 minutes for a Saturn-borne signal to arrive at Earth. So by the time JPL stopped receiving a signal from Cassini, the spacecraft would have long been destroyed, a blade of light coursing through the planet’s northern sky.


Taken by Cassini, this infrared view of Titan peers through the moon's haze.
Credit: NASA/JPL/University of Arizona/University of Idaho

Almost everything we know about Saturn and its moons comes from the Cassini mission, which launched in 1997 and arrived at Saturn seven years later. To date, it has led to more than 4000 published scientific papers and the discovery of six moons. Among other findings, Cassini allowed us to discover that Saturn's E-ring is created by ice and debris blasted from the plumes of its moon Enceladus. "Propellers" and "peaks" have been discovered or explained in the rings, shedding new light on the formation of planetary bodies and even galaxies. The study of Saturn's magnetosphere is helping scientists tease out the length of a Saturnian day (a stubborn mystery yet to be solved) and the thornier question yet of its composition and internal arrangement.

Less than six months after the spacecraft arrived at the Saturn system, it sent a probe called Huygens to the surface of Titan, the largest of Saturn's moons. Titan is the only known moon in the solar system to possess a dense atmosphere, which has, since the invention of the telescope, denied astronomers a view of its surface. Huygens would solve that problem, and once Titan's veil was pierced, what it discovered threatened to upend all of NASA's plans for outer planets exploration.

That's because Huygens revealed unambiguous evidence of liquid activity on Titan's surface. Even mighty Europa, long the darling of the outer planets community for its subsurface ocean, for a brief time seemed staid and uninteresting. Something flowed on Titan! Cassini would only build on this discovery, detecting massive, stable lakes and seas on Saturn's largest moon, making it the only non-Earth body in the solar system to possess such liquid bodies. It's also the only known moon with a weather system.

Titan's lakes are not filled with water, but liquid methane. If the surface harbors life—and it is certainly thought to be habitable—it will be methane-based, and thus alien in the truest sense of the word for us carbon-based lifeforms on Earth. As if its weather system and seas weren't amazing enough, beneath its surface, Titan likely possesses a liquid water ocean.

Cassini, meanwhile, shocked scientists with its discovery of massive plumes of water blasting from another Saturnian moon, Enceladus, which originate from a global, subsurface saltwater ocean that possesses organic compounds and possibly hydrothermal vents on its seafloor. If you're keeping score, those are all the ingredients necessary for life. Enceladus even helps scientists along with a nice interface between space and the ocean by way of a boiling, slushy surface at the plumes' points of origin.

"We thought this tiny moon would be frozen solid and inactive," said Linda Spilker, the project scientist of the Cassini mission. "And what a surprise to find not only geysers of water vapor and water particles coming out, but to find organics, a salty global ocean underneath the icy crust, and even the possibility of hydrothermal vents: the conditions that could be right for life."

Cassini, in other words, expanded the habitable zone of our star. Once it was thought to extend only to Earth, and then to Mars, then to the Jovian system (by way of Europa). Now the zone extends as far as Saturn—10 times the distance of the Earth to the Sun. Planetary scientists already have plans to revisit both Titan and Enceladus, and as early as next year, NASA might select a mission for development and eventual launch. One proposal is to send a submarine to explore Titan's methane ocean.

Cassini Mission: Construction/Assembly/Launch Media Reel from JPLraw on Vimeo.

Cassini is the culmination of American space science and engineering, the heir of the Voyagers, Magellan, Galileo, and Mars Observer. It cost $3.9 billion to build and represents one of the best investments the U.S. government has ever made.

"We’ve had 13 years at Saturn, but 20 years of an incredible spacecraft that was designed by people that had 30 years of experience when they designed it," said Julie Webster, the Cassini spacecraft operations team manager at JPL. "And they built a perfect spacecraft." She was part of the mission when Cassini was only schematics, parts, and dreams. During assembly, she even sat inside it. She was the engineer responsible for the health and safety of the spacecraft throughout the mission, and monitored its health from the spaceflight operations center.

The spacecraft performed almost impossibly well for 20 years, lacking even the slightest hint of a close-call, a mechanical flaw, or a design limitation to be overcome mid-mission. Only toward the end, when engineers and scientists set Cassini on a course of daring dives between the rings and Saturn itself, was there a moment of worry. Would some unknown space debris smash the spacecraft? But Cassini emerged unscathed from the region—which proved remarkably hospitable to a visiting vessel—and spent 13 years in the Saturnian system zipping around the planet as though it were the latest model designed for ring dives.

But Cassini did find worlds habitable by alien life forms, and if the spacecraft, left derelict, were to somehow impact one of those worlds, there could be terrible repercussions. If humans were to contaminate Enceladus with microbes from Earth, and then with some later spacecraft find life on the moon, we wouldn't know whether the life we found was life we brought there. Or worse yet: Imagine if we were to find life that emerged independently on Enceladus only to kill it with life from Earth. (The much publicized planetary protection officer position at NASA is not so much focused on protecting Earth from aliens as it is focused on protecting aliens from Earth.)

There were a few other options. It could have been sent to Uranus, though would have taken decades to arrive and would have been able to perform only limited science. Or it could have been sent to Neptune, but it would have taken twice as long and yielded an equally paltry science return. Neither ending really befitted Cassini, the greatest science laboratory ever built by human hands.

Earl Maize, the Cassini project manager at JPL, called it "a superb machine in an amazing place doing everything we could possibly do to reveal the mysteries and secrets of our solar system."

There was no more dignified ending to the spacecraft, then, than to send it into the world that it gave to humanity, doing the sort of frontier science that it had done for so long. The spacecraft's brief time in Saturn's atmosphere during its descent was spent directly sampling its hydrogen-to-helium ratio, which will help eventually determine the planet's age and enlarge our knowledge of the history of the solar system. Such sampling has never been done before. In addition, its efforts will help scientists work out the effects of a phenomenon called "ring rain," in which particles from the rings fall into the atmosphere.

Cassini's last weeks were characterized by many "lasts": the last flyby of Titan, the last return of Titan data, the last picture of Enceladus setting on Saturn, the last image of the rings, the last view of Saturn itself. It will be a very long time before we get new photos from the system, and every shot counts. Cassini's data will last forever, and will fuel discoveries for decades if not centuries. Consider only the camera data in comparison to previous missions: The spacecraft Galileo returned around 750 images in its entire dataset. Cassini returned that many images every orbit.

Cassini was the farthest spacecraft to orbit another world, and Huygens was the first probe to land somewhere beyond the asteroid belt. (Unlike Cassini, it was designed with planetary surface protection in mind, which is why it could land safely on Titan.) The Cassini-Huygens mission has somehow touched every member of the field of planetary science, even if only as a point of pride. What does a planetary scientist do? Study the formation, history, and geologic, chemical, and possibly biologic activities of bodies in space, and determine what science is necessary to better understand these mysterious worlds and the solar system in which they reside. They work with engineers to design spacecraft and scientific instruments to embark on missions of exploration, and to use the data returned by these spacecraft to refine an increasingly complex mosaic of celestial knowledge. Those things everybody now knows about Saturn—its weather, seasons, weird hexagonal poles, and mysterious moons—we didn't know until we had Cassini, a spaceborne laboratory with a full suite of instruments gathering data. That beautiful photo of Saturn on your computer desktop came from Cassini.

final image of Saturn from cassini spacecraft
The final image of Saturn Cassini ever took. It shows where, just hours later, the spacecraft headed inside—and disappeared.
NASA/JPL-Caltech/Space Science Institute

Sitting astride the San Gabriel mountains, by day JPL looks like a college campus (and formally it's part of Caltech). But at 3:31 a.m. on Friday, September 15, in a darkness free of stray light that might pollute the evening sky, it seemed like one part military facility, one part scene of some unspeakable crime. Security guards were posted across the facility keeping VIPs—scientists from prestigious institutions, members of Congress, and family members of the Cassini team—from wandering where they didn't belong. A Starbucks kiosk on campus was open late into the night for the events; everyone needed the caffeine. Scientists sat obscured by darkness at tables on the campus mall. TV camera vans lined the curbs.

Things were quiet in the control room. Cassini was still fine, its signal still going strong. Two hours earlier, engineers in the Mission Operations Center at JPL had switched the Cassini spacecraft to a "bent-pipe" mode. Science from Saturn would pass through the spacecraft and be sent directly to Earth, as though, as the name implies, it were a bent pipe. In other words, no longer would data collected by its instruments be stored to a hard drive on Cassini for later transmission to Earth, as had been done for just under 20 years. Instead, Cassini rotated until its ion and neutral mass spectrometer (INMS) was pointed at Saturn, and its high-gain antenna pointed at Earth. Every byte of collected data was now sent straight back to Earth for analysis. There was no longer any need for a hard drive because for Cassini, there soon would no longer be any "later."

A crowd slowly gathered over the next hour. There were hugs everywhere, the way family members who've not spoken for ages embrace at a funeral or a graduation. For the grand finale, the mission team wore purple polo shirts embroidered with Cassini-Huygens. As the minutes elapsed, the shirts proliferated on bodies throughout the JPL. And yet they represented a small fraction of the total Cassini team. It was an enormous mission. Thousands worked on it—so many that JPL could not accommodate those who gathered to celebrate the spacecraft's life. Most of the 1500 scientists who had a hand in Cassini's successes in one way or another gathered instead at the nearby Caltech campus, where a NASA broadcast from mission control was projected on massive outdoor screens.

As the Cassini spacecraft sped toward Saturn at 75,000 miles per hour, it was nearly running on fumes, down to 1 percent fuel, though that measurement had a margin of error of "plus or minus 2 percent," explained Todd Barber, the propulsion lead engineer. According to the plan, once it entered Saturn's atmosphere, it would transmit data about the composition of the atmosphere for about one minute before being silenced forever.

There were no commands left for mission control to send it. So instead, the team watched. "We’re taking in-situ instrument data, sensing the magnetic field, mass spectrometers, feeling out the atmosphere and what its constituents are, and sending it right to Earth," Doody said from the Ace. The team checked the spacecraft's subsystems. In keeping with Cassini's peerless record of reliability over the last two decades, every system reported nominal.

As the spacecraft entered Saturn, the spacecraft's altitude controls grew more active. Coming in a little easterly of the North Pole, it plunged into Saturn's atmosphere at 10-degrees latitude. The atmosphere was thin but swift—about the same density as experienced by the International Space Station at Earth. Cassini’s thrusters began firing furiously in all directions in a desperate bid to maintain stability, just as Doody had anticipated they would. They were not built to fight an atmosphere, and certainly not one with Saturn's torque and drag.

And as predicted, the spacecraft hung in there for about a minute, gathering data and passing it back immediately to the Deep Space Network for eventual analysis.

In the JPL Von Karman Auditorium, scientists, engineers, and the media cheered and bemoaned every spike and wobble of the signal from Cassini. It would take weeks for the science data to yield preliminary results, and there were no more images to come from the spacecraft. (The camera instrument was disabled for the finale; there was no time to transmit images.) All that mattered at that moment was the signal.

Over the course of the mission, Cassini traveled a total of 4.9 billion miles and performed 294 orbits of Saturn. Even as it plunged into Saturn, where it would be vaporized from extreme heat and pressure, its internal electronics ran at room temperature. It tumbled and twirled, breaking its line of sight with Mother Earth, ending communications.

Cassini was gone.

"Project manager, flight director," Webster said over her headset. "We call loss of signal at one one five five four six."

Maize, the project manager, who was seated next to her, then followed protocol: He called the end of mission and signed off the communications network.

Cassini team members Earl Maize (left) and Julie Webster embrace after the spacecraft plunged into Saturn.
Cassini team members Earl Maize and Julie Webster embrace after the Cassini spacecraft plunged into Saturn.
NASA/Joel Kowsky

There was at first a stunned silence. All around, the teams' eyes were bleary and teary. Their faces showed fatigue and sadness.

But there was also pride and acceptance. The most surprising reaction that day was the applause. It came from every corner, and it came from somewhere deep within the team. Cassini's life—to anthropomorphize it—was a life well-lived, one of meaning and purpose. Why not celebrate it?

In the end, the spacecraft survived 30 seconds longer than was predicted. Every fraction of a second was profoundly valuable from a scientific standpoint. "Who knows how many Ph.D. theses might be in those final seconds of data?" wondered Spilker, the leader of the Cassini mission. She had worked on Cassini for 30 years, or—as she described it—one Saturn orbit.

After Cassini became a shooting star in its northern sky, scientists and engineers from JPL and NASA reflected on the mission and the spacecraft that carried it out. "I've been so busy, I haven't had a chance to deal with the emotional stuff," Barber, who had been Cassini's propulsion lead engineer for 20 years, told me. "Next week is going to be hell."

For Webster, Cassini had been a constant of life for decades. Because celestial mechanics do not recognize U.S. holidays, the spacecraft was part of her Christmases and New Years, Easters and Thanksgivings. "I no longer have a spacecraft that will keep me up at night," she said, her voice slightly trembling. "And in a few days, I think I'm going to really miss that."

Original image
Cassini captured this sublime image of Saturn four days before it plunged into the planet's atmosphere.
NSF/LIGO/Sonoma State University/A. Simonnet
arrow
Space
Astronomers Observe a New Kind of Massive Cosmic Collision for the First Time
Original image
NSF/LIGO/Sonoma State University/A. Simonnet

For the first time, astronomers have detected the colossal blast produced by the merger of two neutron stars—and they've recorded it both via the gravitational waves the event produced, as well as the flash of light it emitted.

Physicists believe that the pair of neutron stars—ultra-dense stars formed when a massive star collapses, following a supernova explosion—had been locked in a death spiral just before their final collision and merger. As they spiraled inward, a burst of gravitational waves was released; when they finally smashed together, high-energy electromagnetic radiation known as gamma rays were emitted. In the days that followed, electromagnetic radiation at many other wavelengths—X-rays, ultraviolet, optical, infrared, and radio waves—were released. (Imagine all the instruments in an orchestra, from the lowest bassoons to the highest piccolos, playing a short, loud note all at once.)

This is the first time such a collision has been observed, as well as the first time that both kinds of observations—gravitational waves and electromagnetic radiation—have been recorded from the same event, a feat that required co-operation among some 70 different observatories around the world, including ground-based observatories, orbiting telescopes, the U.S. LIGO (Laser Interferometer Gravitational-Wave Observatory), and European Virgo gravitational wave detectors.

"For me, it feels like the dawning of a next era in astrophysics," Julie McEnery, project scientist for NASA's Fermi Gamma-ray Space Telescope, one of the first instruments to record the burst of energy from the cosmic collision, tells Mental Floss. "With this observation, we've connected these new gravitational wave observations to the rest of the observations that we've been doing in astrophysics for a very long time."

A BREAKTHROUGH ON SEVERAL FRONTS

The observations represent a breakthrough on several fronts. Until now, the only events detected via gravitational waves have been mergers of black holes; with these new results, it seems likely that gravitational wave technology—which is still in its infancy—will open many new phenomena to scientific scrutiny. At the same time, very little was known about the physics of neutron stars—especially their violent, final moments—until now. The observations are also shedding new light on the origin of gamma-ray bursts (GRBs)—extremely energetic explosions seen in distant galaxies. As well, the research may offer clues as to how the heavier elements, such as gold, platinum, and uranium, formed.

Astronomers around the world are thrilled by the latest findings, as today's flurry of excitement attests. The LIGO-Virgo results are being published today in the journal Physical Review Letters; further articles are due to be published in other journals, including Nature and Science, in the weeks ahead. Scientists also described the findings today at press briefings hosted by the National Science Foundation (the agency that funds LIGO) in Washington, and at the headquarters of the European Southern Observatory in Garching, Germany.

(Rumors of the breakthrough had been swirling for weeks; in August, astronomer J. Craig Wheeler of the University of Texas at Austin tweeted, "New LIGO. Source with optical counterpart. Blow your sox off!" He and another scientist who tweeted have since apologized for doing so prematurely, but this morning, minutes after the news officially broke, Wheeler tweeted, "Socks off!") 

The neutron star merger happened in a galaxy known as NGC 4993, located some 130 million light years from our own Milky Way, in the direction of the southern constellation Hydra.

Gravitational wave astronomy is barely a year and a half old. The first detection of gravitational waves—physicists describe them as ripples in space-time—came in fall 2015, when the signal from a pair of merging black holes was recorded by the LIGO detectors. The discovery was announced in February 2016 to great fanfare, and was honored with this year's Nobel Prize in Physics. Virgo, a European gravitational wave detector, went online in 2007 and was upgraded last year; together, they allow astronomers to accurately pin down the location of gravitational wave sources for the first time. The addition of Virgo also allows for a greater sensitivity than LIGO could achieve on its own.

LIGO previously recorded four different instances of colliding black holes—objects with masses between seven times the mass of the Sun and a bit less than 40 times the mass of the Sun. This new signal was weaker than that produced by the black holes, but also lasted longer, persisting for about 100 seconds; the data suggested the objects were too small to be black holes, but instead were neutron stars, with masses of about 1.1 and 1.6 times the Sun's mass. (In spite of their heft, neutron stars are tiny, with diameters of only a dozen or so miles.) Another key difference is that while black hole collisions can be detected only via gravitational waves—black holes are black, after all—neutron star collisions can actually be seen.

"EXACTLY WHAT WE'D HOPE TO SEE"

When the gravitational wave signal was recorded, on the morning of August 17, observatories around the world were notified and began scanning the sky in search of an optical counterpart. Even before the LIGO bulletin went out, however, the orbiting Fermi telescope, which can receive high-energy gamma rays from all directions in the sky at once, had caught something, receiving a signal less than two seconds after the gravitational wave signal tripped the LIGO detectors. This was presumed to be a gamma-ray burst, an explosion of gamma rays seen in deep space. Astronomers had recorded such bursts sporadically since the 1960s; however, their physical cause was never certain. Merging neutron stars had been a suggested culprit for at least some of these explosions.

"This is exactly what we'd hoped to see," says McEnery. "A gamma ray burst requires a colossal release of energy, and one of the hypotheses for what powers at least some of them—the ones that have durations of less than two seconds—was the merger of two neutron stars … We had hoped that we would see a gamma ray burst and a gravitational wave signal together, so it's fantastic to finally actually do this."

With preliminary data from LIGO and Virgo, combined with the Fermi data, scientists could tell with reasonable precision what direction in the sky the signal had come from—and dozens of telescopes at observatories around the world, including the U.S. Gemini telescopes, the European Very Large Telescope, and the Hubble Space Telescope, were quickly re-aimed toward Hydra, in the direction of reported signal.

The telescopes at the Las Campanas Observatory in Chile were well-placed for getting a first look—because the bulletin arrived in the morning, however, they had to wait until the sun dropped below the horizon.

"We had about eight to 10 hours, until sunset in Chile, to prepare for this," Maria Drout, an astronomer at the Carnegie Observatories in in Pasadena, California, which runs the Las Campanas telescopes, tells Mental Floss. She was connected by Skype to the astronomers in the control rooms of three different telescopes at Las Campanas, as they prepared to train their telescopes at the target region. "Usually you prepare a month in advance for an observing run on these telescopes, but this was all happening in a few hours," Drout says. She and her colleagues prepared a target list of about 100 galaxies, but less than one-tenth of the way through the list, by luck, they found it: a tiny blip of light in NGC 4993 that wasn't visible on archival images of the same galaxy. (It was the 1-meter Swope telescope that snagged the first images.)

A NEW ERA OF ASTROPHYSICS

When a new star-like object in a distant galaxy is spotted, a typical first guess is that it's a supernova (an exploding star). But this new object was changing very rapidly, growing 100 times dimmer over just a few days while also quickly becoming redder—which supernovae don't do, explains Drout, who is cross-appointed at the Dunlap Institute for Astronomy and Astrophysics at the University of Toronto. "We ended up following it for three weeks or so, and by the end, it was very clear that this [neutron star merger] was what we were looking at," she says.

The researchers say they can't be sure if the resulting object was another, larger neutron star, or whether it would have been so massive that it would have collapsed into a black hole.

As exciting as the original detection of gravitational waves last year was, Drout is looking forward to a new era in which both gravitational waves and traditional telescopes can be used to study the same objects. "We can learn a lot more about these types of extreme systems that exist in the universe, by coupling the two together," she says.

The detection shows that "gravitational wave science is moving from being a physics experiment to being a tool for astronomers," Marcia Rieke, an astronomer at the University of Arizona who is not involved in the current research, tells Mental Floss. "So I think it's a pretty big deal."

Physicists are also learning something new about the origin of the heaviest elements in the periodic table. For many years, these were thought to arise from supernova explosions, but spectroscopic data from the newly observed neutron star merger (in which light is broken up into its component colors) suggests that such explosion produce enormous quantities of heavy elements—including enough gold to put Fort Knox to shame. (The blast is believed to have created some 200 Earth-masses of gold, the scientists say.) "It's telling us that most of the gold that we know about is produced in these mergers, and not in supernovae," McEnery says.

Editor's note: This post has been updated.

Original image
Cassini captured this sublime image of Saturn four days before it plunged into the planet's atmosphere.
NASA/JPL-Caltech
arrow
Space
Send Your Name to Space on NASA's Latest Mars Lander
Original image
NASA/JPL-Caltech

Humans may not reach Mars until the 2030s (optimistically), but you can get your name there a whole lot sooner. As Space.com reports, NASA is accepting names from the public to be engraved on a small silicon microchip that's being sent into space with their latest Mars lander, InSight.

All you have to do is submit your name online to NASA, and the space agency will put it on the lander—in super-tiny form, of course—which will set off for Mars in May 2018.

This is the public's second shot at getting their name to Mars: NASA first put out a call for names to go to the Red Planet with InSight in 2015. The planned 2016 launch was delayed over an issue with one of the instruments, and since the naming initiative was so popular—almost 827,000 people submitted their names the first time around—they decided to open the opportunity back up and add a second microchip.

A scientist positions the microchip on the InSight lander.
NASA/JPL-Caltech/Lockheed Martin

NASA is encouraging people to sign up even if they've sent in their names for other mission microchips. (The space agency also sent 1.38 million names up with Orion's first test flight in 2014.) You can put your name on both of InSight's microchips, in other words, as well as any future missions. The agency's "frequent flyer" program allows you to keep track of every mission to which your name is attached. Interplanetary fame, here you come.

You can submit your name for the InSight mission until November 1 using this form. If you miss the deadline, though, don't worry too much: You'll soon be able to submit your name for Exploration Mission-1's November 2018 launch.

[h/t Space.com]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios