10 Fascinating Facts About Corpse Flowers

Big, smelly, rare, phallic—these adjectives all describe Amorphophallus titanum, commonly known as the corpse flower. While native to western Indonesia, the plant is currently taking Washington, D.C. by smelly storm: The last of three—count 'em, three—corpse flowers to bloom this summer began its stinky blossoming this week at the United States Botanic Garden. In honor of the occasion, here's some trivia to celebrate one of nature's stinkiest plants.

1. THE CORPSE FLOWER'S LATIN NAME IS NSFW (OR BRITISH TV).

No, it's not just you: Amorphophallus titanum really does look like a large, lumpy penis. In fact, the plant gets its scientific name from three roots: amorphos (without form), phallos (penis), and titanum (giant).

Can't say the plant's Latin name in polite company without blushing? Thanks to David Attenborough, the English naturalist and TV personality, you can also opt to use its common name, Titan arum. While narrating BBC nature documentary series "The Private Life of Plants," Attenborough thought the corpse flower's proper name was too improper to say on TV, so he coined a less-scandalous moniker. Or, you could simply go with its Indonesian name, bunga bangkai.

2. A 19TH-CENTURY ITALIAN BOTANIST 'DISCOVERED' THE CORPSE FLOWER.

Western scientists first learned of Amorphophallus titanum in 1878, when Italian botanist Odoardo Beccari came across the enormous plant growing in the rainforests of Sumatra, a large island in western Indonesia. The specimen he recorded had a circumference of around 5 feet, and its height was around 10 feet.

Beccari tried to ship the flowering shrub's corms, or giant underground tubers, back to Europe, but French customs ended up holding them under an order designed to prevent the spread of the grapevine pest Phylloxera. Still, a few seeds survived against the odds, and a single seedling was sent to the Kew Botanic Gardens in England, where Beccari had once studied. There, it flowered in 1889. In 1926, when the same corpse flower bloomed again, the crowds were so large that police were brought in to control them.

3. THE CORPSE FLOWER GROSSED OUT THE ENGLISH (IN MORE WAYS THAN ONE).

Not surprisingly, the corpse flower quickly gained notoriety in Europe: An English artist hired to illustrate the plant is said to have become ill from the odor, and governesses forbade young ladies from looking at it, for obvious reasons.

4. A CORPSE FLOWER ISN'T REALLY A SINGLE FLOWER.

Technically, a corpse flower isn't a single flower; it's a flowering plant with clusters of blooms. The plant consists of a thick central spike, known as a spadix, with a base that's encircled by two rings of "male" and "female" flowers. A large, frilly leaf called a spathe envelops these flowers to protect them.

5. CORPSE FLOWERS ARE, AS THEIR LATIN NAME SUGGESTS, ENORMOUS.

Aside from its smell, a corpse flower's most noticeable quality is its sheer size. The plant holds the record for the world's largest unbranched inflorescence (a fancy term for describing a floral structure made of many smaller individual flowers), and it can reach heights of up to 12 feet in the wild. Cultivated corpse flowers are smaller, measuring anywhere from 6 to 8 feet.

6. THEY DON'T HAVE AN ANNUAL BLOOMING CYCLE.

Years, or even decades, can pass before a corpse flower reaches peak bloom. As the big moment finally approaches, the plant's bud grows several inches per day before slowing down its growth. Two protective leaves, called bracts, shrivel and fall off the spathe's base. Then, the spathe unfurls over roughly 24 to 36 hours, giving curious onlookers just a small window to see (and smell) its maroon-colored insides for themselves.

7. THERE'S SCIENCE BEHIND THE CORPSE FLOWER'S TERRIBLE SMELL.

When a corpse flower blooms, the spadix heats up to temperatures of up to 98°F as the plant unleashes a stench akin to rotting flesh. "Those pulses of heat cause the air to rise, like a chimney effect," Ray Mims, a spokesperson for the U.S. Botanic Garden, explained to Washingtonian magazine. "It gets the stench up in the air" to attract pollinating dung beetles and carrion beetles, who are drawn to the scent of rotting flesh.

Experts have identified different molecules responsible for titan arum's stink, including dimethyl trisulfide (like limburger cheese), trimethylamine (rotting fish), and isovaleric acid (sweaty socks).

8. CORPSE FLOWERS GROW FRUIT WHEN THEY'RE POLLINATED.

Once a corpse flower finishes blooming, it doesn't die. The spathe withers and collapses after a few days, and if pollinated, the plant soon produces hundreds of small, golden-colored fruits. These berry-like seeds are eaten and dispersed by animals such as birds and the rhinoceros hornbill, or harvested in captivity by garden conservation scientists. (No word on how they taste, as they're reportedly not suitable for human consumption.)

Once the seeds ripen from gold to dark orange, and then to dark red—a stage that lasts for five or six months—the corpse flower goes dormant. Then, it sprouts as a tree-like leaf during its next few life cycles as it stores away energy from the sun. Each cycle, the leaf grows bigger and bigger, before dying. Once the plant's corm is fully replenished, it finally blooms again.

9. THE CORPSE FLOWER WAS ONCE THE BRONX'S OFFICIAL FLOWER.

In 1937, the New York Botanical Garden became the proud home of America's first recorded corpse flower bloom. Two years later, yet another flower bloomed in the Bronx garden. Borough president James J. Lyons was so tickled, he designated Amorphophallus titanum as the Bronx's official flower. ''Its tremendous size shall be symbolic of the fastest-growing borough in the City of New York,'' Lyons said, according to The New York Times. Meanwhile, news crews covering the event are said to have nearly fainted from the smell.

The Bronx used the corpse flower as a symbol until 2000, when then-borough president Fernando Ferrer, aiming to overhaul the municipality's image, changed its official flower to the day lily. "I hate to think of the corpse flower as the Bronx flower, because people would think the Bronx and think, 'The Bronx stinks,'" Michael Ruggiero, then senior curator for horticulture at the New York Botanical Garden, told the Times. "The Bronx is a people place, and the corpse flower is not a people plant. The day lily is, and therefore is a good fit for the Bronx."

10. THE CORPSE FLOWER IS THREATENED BY HABITAT LOSS.

Corpse flowers aren't just rare—they're also vulnerable to habitat loss and destruction, as vast swaths of Sumatra's rainforests are chopped down for timber and to clear ground for oil palm plantations. According to one estimate provided by the Kew Royal Botanic Gardens, Indonesia has now lost around 72 percent of its original rainforest cover. This contributes to the flower's demise, and also threatens important pollinators like the rhinoceros hornbill.

Allergies Are On the Rise, and Scientists Have a Good Idea Why

iStock
iStock

If it seems like everyone around you is constantly sneezing and sniffling, it might be because allergies are on the rise. As New Scientist reports, several studies seem to indicate this is an ongoing trend. While allergies were rare before the mid-20th century, they’re now a common occurrence in children and adults alike. According to the Food Allergy Research and Education Organization, 15 million people in the U.S. have a food allergy.

To make matters worse, some of the fastest-developing countries are seeing a steady increase in allergies, especially in China. Asthma rates among children in Shanghai rose from 2 percent to 10 percent between 1990 and 2011.

So what exactly is at play here? Scientists think the rise in allergies has much to do with how drastically our lifestyles have changed in the last century. In particular, many modern people spend most of their days—and lives—indoors, which wasn’t always the norm. Spending time outdoors at an early age helps expose you to certain microbes “that have helped hone the human immune system for millennia,” New Scientist notes.

For that reason, children who grow up on farms are less likely to develop allergies. However, scientists still don’t understand exactly how these microbes help prevent our immune system from producing Immunoglobulin E, which is released in response to an allergen coming into contact with the body.

Fortunately, there are ways to keep your allergies under control, even if you can't prevent them entirely. Showering before you sleep, using an air purifier, and keeping pets off your bed are just a few of the quick tips you can try.

[h/t New Scientist]

The Science Behind Why the Earth Isn't Flat

Earth as captured from near the lunar horizon by the Lunar Reconnaissance Orbiter in 2015.
Earth as captured from near the lunar horizon by the Lunar Reconnaissance Orbiter in 2015.
NASA

On March 24, 2018, flat-earther Mike Hughes set out prove that the Earth is shaped like a Frisbee. The plan: Strap himself to a homemade steam-powered rocket and launch 52 miles into sky above California’s Mojave Desert, where he'd see Earth's shape with his own eyes.

It didn't matter that astronauts like John Glenn and Neil Armstrong had been to space and verified that the Earth is round; Hughes didn't believe them. According to The Washington Post, Hughes thought they were "merely paid actors performing in front of a computer-generated image of a round globe."

The attempt, ultimately, was a flop. He fell back to Earth with minor injuries after reaching 1875 feet—not even as high as the tip of One World Trade Center. For the cost of his rocket stunt ($20,000), Hughes could have easily flown around the world on a commercial airliner at 35,000 feet.

Hughes isn't alone in his misguided belief: Remarkably, thousands of years after the ancient Greeks proved our planet is a sphere, the flat-Earth movement seems to be gaining momentum. "Theories" abound on YouTube, and the flat-Earth Facebook page has some 194,000 followers.

Of course, the Earth isn't flat. It's a sphere. There is zero doubt about this fact in the real, round world. To say the evidence is overwhelming is an understatement.

HOT SPINNING BODIES

Not every celestial body is a sphere, but round objects are common in the universe: In addition to Earth and all other known large planets, stars and bigger moons are also ball-shaped. These objects, and billions of others, have the same shape because of gravity, which pulls everything toward everything else. All of that pulling makes an object as compact as it can be, and nothing is more compact than a sphere. Say, for example, you have a sphere of modeling clay that is exactly 10 inches in diameter. No part of the mass is more than 5 inches from the center. That's not the case with any other shape—some part of the material will be more than 5 inches from the center of the mass. A sphere is the smallest option.

Today the Earth is mostly solid with a liquid outer core, but when the planet was forming, some 4.5 billion years ago, it was very hot and behaved like more like a fluid—and was subject to the squishing effects of gravity.

And yet, the Earth isn't a perfect sphere; it bulges slightly at the equator. "Over a long time-scale, the Earth acts like a highly viscous fluid," says Surendra Adhikari, a geophysicist at the Jet Propulsion Laboratory in Pasadena, California. The Earth has been spinning since it was formed, and "if you have a spinning fluid, it will bulge out due to centrifugal forces." You can see evidence for this at the equator, where the Earth's diameter is 7926 miles—27 miles larger than at the poles (7899 miles). The difference is tiny—just one-third of 1 percent.

THE SHADOW KNOWS

The ancient Greeks figured out that Earth was a sphere 2300 years ago by observing the planet's curved shadow during a lunar eclipse, when the Earth passes between the Sun and the Moon. Some flat-Earth believers claim the world is shaped like a disk, perhaps with a wall of ice along the outer rim. (Why no one has ever seen this supposed wall, let alone crashed into it, remains unexplained.) Wouldn't a disk-shaped Earth also cast a round shadow? Well, it would depend on the orientation of the disk. If sunlight just happened to hit the disk face-on, it would have a round shadow. But if light hit the disk edge-on, the shadow would be a thin, straight line. And if the light fell at an oblique angle, the shadow would be a football–shaped ellipse. We know the Earth is spinning, so it can't present one side toward the Sun time after time. What we observe during lunar eclipses is that the planet's shadow is always round, so its shape has to be spherical.

The ancient Greeks also knew Earth's size, which they determined using the Earth's shape. In the 2nd century BCE, a thinker named Eratosthenes read that on a certain day, the people of Syene, in southern Egypt, reported seeing the Sun directly overhead at noon. But in Alexandria, in northern Egypt, on that same day at the same time, Eratosthenes had observed the Sun being several degrees away from overhead. If the Earth were flat, that would be impossible: The Sun would have to be the same height in the sky for observers everywhere, at each moment in time. By measuring the size of this angle, and knowing the distance between the two cities, Eratosthenes was able to calculate the Earth's diameter, coming up with a value within about 15 percent of the modern figure.

And when Columbus set sail from Spain in 1492, the question wasn't "Would he fall off the edge of the world?"—educated people knew the Earth was round—but rather, how long a westward voyage from Europe to Asia would take, and whether any new continents might be found along the way. During the Age of Exploration, European sailors noticed that, as they sailed south, "new" constellations came into view—stars that could never be seen from their home latitudes. If the world were flat, the same constellations would be visible from everywhere on the Earth's surface.

Finally, in 1522, Ferdinand Magellan's crew became the first people to circle the globe. Like Columbus, Magellan also set off from Spain, in 1519, heading west—and kept generally going west for the next three years. The expedition wound up back at the starting point (though without Magellan, who was killed during a battle in the Philippines). And speaking of ships and seafaring: One only needs to watch a tall ship sailing away from port to see that its hull disappears before the top of its mast. That happens because the ship is traveling along a curved surface; if the Earth were flat, the ship would just appear smaller and smaller, without any part of it slipping below the horizon.

THE EVIDENCE IS ALL AROUND (AND ALL ROUND)

But you don't need a ship to verify the Earth's shape. When the Sun is rising in, say, Moscow, it's setting in Los Angeles; when it's the middle of the night in New Delhi, the Sun is shining high in the sky in Chicago. These differences occur because the globe is constantly spinning, completing one revolution per day. If the Earth were flat, it would be daytime everywhere at once, followed by nighttime everywhere at once.

You also experience the Earth's roundness every time you take a long-distance flight. Jetliners fly along the shortest path between any two cities. "We use flight paths that are calculated on the basis of the Earth being round," Adhikari says. Imagine a flight from New York to Sydney: It would typically head northwest, toward Alaska, then southwest toward Australia. On the map provided in your airline's in-flight magazine, that might look like a peculiar path. But wrap a piece of string around a globe, and you'll see that it’s the shortest possible route.

"If the Earth were flat," Adhikari says, "the trajectory would be completely different." How different depends on which way the globe is sliced into a flattened map, but if it looked like it does on a Mercator-projection map, it might head east and pass over Africa.

Engineers and architects also take the Earth's curvature into account when building large structures. A good example is the towers that support long suspension bridges such as the Verrazano Narrows bridge in New York City. Its towers are slightly out of parallel with each other, the tops being more than 1.5 inches further apart than their bases. If the Earth were flat, the bottom of the towers would be separated by the exact same distance as the top of the towers; the planet's curvature forces the tops of the towers apart.

And for the last half-century, we've had eyewitness and photographic proof of the Earth's shape. In December 1968, the crew of Apollo 8 left Earth for the Moon. When they looked out of the Command Module windows, they saw a blue-and-white marble suspended against the blackness of space. On Christmas Eve, lunar module pilot William Anders snapped the famous "Earthrise" photograph. It gave us an awe-inspiring perspective of our round planet that was unprecedented in human history—but it wasn't a surprise to anyone.

SECTIONS

arrow
LIVE SMARTER