CLOSE
Original image
Richard Bouhet // Getty

4 Expert Tips on How to Get the Most Out of August's Total Solar Eclipse

Original image
Richard Bouhet // Getty

As you might have heard, there’s a total solar eclipse crossing the U.S. on August 21. It’s the first total solar eclipse in the country since 1979, and the first coast-to-coast event since June 8, 1918, when eclipse coverage pushed World War I off the front page of national newspapers. Americans are just as excited today: Thousands are hitting the road to stake out prime spots for watching the last cross-country total solar eclipse until 2045. We’ve asked experts for tips on getting the most out of this celestial spectacle.

1. DON’T FRY YOUR EYES—OR BREAK THE BANK

To see the partial phases of the eclipse, you will need eclipse glasses because—surprise!—staring directly at the sun for even a minute or two will permanently damage your retinas. Make sure the glasses you buy meet the ISO 12312-2 safety standards. As eclipse frenzy nears its peak, shady retailers are selling knock-off glasses that will not adequately protect your eyes. The American Astronomical Society keeps a list of reputable vendors, but as a rule, if you can see anything other than the sun through your glasses, they might be bogus. There’s no need to splurge, however: You can order safe paper specs in bulk for as little as 90 cents each. In a pinch, you and your friends can take turns watching the partial phases through a shared pair of glasses. As eclipse chaser and author Kate Russo points out, “you only need to view occasionally—no need to sit and stare with them on the whole time.”

2. DON’T DIY YOUR EYE PROTECTION

There are plenty of urban legends about “alternative” ways to protect your eyes while watching a solar eclipse: smoked glass, CDs, several pairs of sunglasses stacked on top of each other. None works. If you’re feeling crafty, or don’t have a pair of safe eclipse glasses, you can use a pinhole projector to indirectly watch the eclipse. NASA produced a how-to video to walk you through it.

3. GET TO THE PATH OF TOTALITY

Bryan Brewer, who published a guidebook for solar eclipses, tells Mental Floss the difference between seeing a partial solar eclipse and a total solar eclipse is “like the difference between standing right outside the arena and being inside watching the game.”

During totality, observers can take off their glasses and look up at the blocked-out sun—and around at their eerily twilit surroundings. Kate Russo’s advice: Don’t just stare at the sun. “You need to make sure you look above you, and around you as well so you can notice the changes that are happening,” she says. For a brief moment, stars will appear next to the sun and animals will begin their nighttime routines. Once you’ve taken in the scenery, you can use a telescope or a pair of binoculars to get a close look at the tendrils of flame that make up the sun’s corona.

Only a 70-mile-wide band of the country stretching from Oregon to South Carolina will experience the total eclipse. Rooms in the path of totality are reportedly going for as much as $1000 a night, and news outlets across the country have raised the specter of traffic armageddon. But if you can find a ride and a room, you'll be in good shape for witnessing the spectacle.

4. PRESERVE YOUR NIGHT VISION

Your eyes need half an hour to fully adjust to darkness, but the total eclipse will last less than three minutes. If you’ve just been staring at the sun through the partial phases of the eclipse, your view of the corona during totality will be obscured by lousy night vision and annoying green afterimages. Eclipse chaser James McClean—who has trekked from Svalbard to Java to watch the moon blot out the sun—made this rookie mistake during one of his early eclipse sightings in Egypt in 2006. After watching the partial phases, with stray beams of sunlight reflecting into his eyes from the glittering sand and sea, McClean was snowblind throughout the totality.

Now he swears by a new method: blindfolding himself throughout the first phases of the eclipse to maximize his experience of the totality. He says he doesn’t mind “skipping the previews if it means getting a better view of the film.” Afterward, he pops on some eye protection to see the partial phases of the eclipse as the moon pulls away from the sun. If you do blindfold yourself, just remember to set an alarm for the time when the total eclipse begins so you don’t miss its cross-country journey. You'll have to wait 28 years for your next chance.

Original image
iStock
arrow
Words
15 Subatomic Word Origins
Original image
iStock

In July 2017, researchers at the European Organization for Nuclear Research (CERN) found evidence for a new fundamental particle of the universe: Ξcc++, a special kind of Xi baryon that may help scientists better understand how quarks are held together. Is that Greek to you? Well, it should be. The names for many of the particles that make up the universe—as well as a few that are still purely theoretical—come from ancient Greek. Here’s a look at 15 subatomic etymologies.

1. ION

An ion is any atom or molecule with an overall electric charge. English polymath William Whewell suggested the name in an 1834 letter to Michael Faraday, who made major discoveries in electromagnetism. Whewell based ion on the ancient Greek verb for “go” (ienai), as ions move towards opposite charges. Faraday and Whewell had previously considered zetode and stechion.

2. ELECTRON

George Stoney, an Anglo-Irish physicist, introduced the term electron in 1891 as a word for the fundamental unit of charge carried by an ion. It was later applied to the negative, nucleus-orbiting particle discovered by J. J. Thomson in 1897. Electron nabs the -on from ion, kicking off the convention of using -on as an ending for all particles, and fuses it with electric. Electric, in turn, comes from the Greek for “amber,” in which the property was first observed. Earlier in the 19th century, electron was the name for an alloy of gold and silver.

3. PROTON

The electron’s counterpart, the positively charged proton in the nuclei of all atoms, was named by its discoverer, Ernest Rutherford. He suggested either prouton or proton in honor of William Prout, a 19th-century chemist. Prout speculated that hydrogen was a part of all other elements and called its atom protyle, a Greek coinage joining protos ("first") and hule ("timber" or "material") [PDF]. Though the word had been previously used in biology and astronomy, the scientific community went with proton.

4. NEUTRON

Joining the proton in the nucleus is the neutron, which is neither positive nor negative: It’s neutral, from the Latin neuter, “neither.” Rutherford used neutron in 1921 when he hypothesized the particle, which James Chadwick didn’t confirm until 1932. American chemist William Harkins independently used neutron in 1921 for a hydrogen atom and a proton-electron pair. Harkins’s latter application calls up the oldest instance of neutron, William Sutherland’s 1899 name for a hypothetical combination of a hydrogen nucleus and an electron.

5. QUARK

Protons and neutrons are composed of yet tinier particles called quarks. For their distinctive name, American physicist Murray Gell-Mann was inspired in 1963 by a line from James Joyce’s Finnegan’s Wake: “Three quarks for Muster Mark.” Originally, Gell-Mann thought there were three types of quarks. We now know, though, there are six, which go by names that are just as colorful: up, down, charm, strange, top, and bottom.

6. MESON

Made up of a quark and an antiquark, which has identical mass but opposite charge, the meson is a short-lived particle whose mass is between that of a proton and an electron. Due to this intermediate size, the meson is named for the ancient Greek mesos, “middle.” Indian physicist Homi Bhabha suggested meson in 1939 instead of its original name, mesotron: “It is felt that the ‘tr’ in this word is redundant, since it does not belong to the Greek root ‘meso’ for middle; the ‘tr’ in neutron and electron belong, of course, to the roots ‘neutr’ and ‘electra’.”

7., 8., AND 9. BOSON, PHOTON, AND GLUON

Mesons are a kind of boson, named by English physicist Paul Dirac in 1947 for another Indian physicist, Satyendra Nath Bose, who first theorized them. Bosons demonstrate a particular type of spin, or intrinsic angular momentum, and carry fundamental forces. The photon (1926, from the ancient Greek for “light”) carries the electromagnetic force, for instance, while the gluon carries the so-called strong force. The strong force holds quarks together, acting like a glue, hence gluon.

10. HADRON

In 2012, CERN’s Large Hadron Collider (LHC) discovered a very important kind of boson: the Higgs boson, which generates mass. The hadrons the LHC smashes together at super-high speeds refer to a class of particles, including mesons, that are held together by the strong force. Russian physicist Lev Okun alluded to this strength by naming the particles after the ancient Greek hadros, “large” or “bulky,” in 1962.

11. LEPTON

Hadrons are opposite, in both makeup and etymology, to leptons. These have extremely tiny masses and don’t interact via the strong force, hence their root in the ancient Greek leptos, “small” or “slender.” The name was first suggested by the Danish chemist Christian Møller and Dutch-American physicist Abraham Pais in the late 1940s. Electrons are classified as leptons.

12. BARYON

Another subtype of hadron is the baryon, which also bears the stamp of Abraham Pais. Baryons, which include the more familiar protons and neutrons, are far more massive, relatively speaking, than the likes of leptons. On account of their mass, Pais put forth the name baryon in 1953, based on the ancient Greek barys, “heavy” [PDF].

13. AXION

Quirky Murray Gell-Mann isn't the only brain with a sense of humor. In his 2004 Nobel Prize lecture, American physicist Frank Wilczek said he named a “very light, very weakly interacting” hypothetical particle the axion back in 1978 “after a laundry detergent [brand], since they clean up a problem with an axial current” [PDF].

14. TACHYON

In ancient Greek, takhys meant “swift,” a fitting name for the tachyon, which American physicist Gerald Feinberg concocted in 1967 for a hypothetical particle that can travel faster than the speed of light. Not so fast, though, say most physicists, as the tachyon would break the fundamental laws of physics as we know them.

15. CHAMELEON

In 2003, the American physicist Justin Khoury and South African-American theoretical physicist Amanda Weltman hypothesized that the elusive dark energy may come in the form of a particle, which they cleverly called the chameleon. Just as chameleons can change color to suit their surroundings, so the physical characteristics of the chameleon particle change “depending on its environment,” explains Symmetry, the online magazine dedicated to particle physics. Chameleon itself derives from the ancient Greek khamaileon, literally “on-the-ground lion.”

For more particle names, see Symmetry’s “A Brief Etymology of Particle Physics,” which helped provide some of the information in this list.

Original image
Ethan Miller/Getty Images
arrow
Space
Look Up! The Orionid Meteor Shower Peaks This Weekend
Original image
Ethan Miller/Getty Images

October is always a great month for skywatching. If you missed the Draconids, the first meteor shower of the month, don't despair: the Orionids peak this weekend. It should be an especially stunning show this year, as the Moon will offer virtually no interference. If you've ever wanted to get into skywatching, this is your chance.

The Orionids is the second of two meteor showers caused by the debris field left by the comet Halley. (The other is the Eta Aquarids, which appear in May.) The showers are named for the constellation Orion, from which they seem to originate.

All the stars are lining up (so to speak) for this show. First, it's on the weekend, which means you can stay up late without feeling the burn at work the next day. Tonight, October 20, you'll be able to spot many meteors, and the shower peaks just after midnight tomorrow, October 21, leading into Sunday morning. Make a late-night picnic of the occasion, because it takes about an hour for your eyes to adjust to the darkness. Bring a blanket and a bottle of wine, lay out and take in the open skies, and let nature do the rest.

Second, the Moon, which was new only yesterday, is but a sliver in the evening sky, lacking the wattage to wash out the sky or conceal the faintest of meteors. If your skies are clear and light pollution low, this year you should be able to catch about 20 meteors an hour, which isn't a bad way to spend a date night.

If clouds interfere with your Orionids experience, don't fret. There will be two more meteor showers in November and the greatest of them all in December: the Geminids.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios