NASA
NASA

NASA Could Send Your Tweet Into Deep Space

NASA
NASA

The inventors of Twitter could never have imagined how their creation would change the world. The social media platform has become the stage upon which some of the most important dramas—and pettiest comedies—of the last few years have played out. And now it'll help beam one lucky person's message into interstellar space, thanks to NASA's #MessageToVoyager contest.

The Voyager 2 and Voyager 1 spacecrafts launched on August 20 and September 5, of 1977. The probes set sail in opposite directions, bound for the outer reaches of space, each bearing a golden record imprinted with messages of peace and welcome from Earth to whomever else the spacecraft might encounter along the way.

The decades since have seen years of astonishing firsts from the two little probes. Voyager 2 has cruised past and sent back images from Jupiter, Saturn, Uranus, and Neptune. Just five years ago, Voyager 1 became the first craft to enter interstellar space.

In celebration of the 40th anniversary of the missions, NASA wants to give the people of Earth the opportunity to send a new message. The agency will transmit the single winning tweet into the area of deep space Voyager 1 now occupies.

To participate, compose a message of up to 60 characters. That includes letters, numbers, spaces, and punctuation. Tag your submission with #MessageToVoyager and post it to Twitter by August 15. You can also share it on Instagram, Facebook, Google+, or Tumblr.

Representatives from NASA, JPL, and the Voyager team will narrow down the entries, and then hold a public vote for the winner.

For full contest rules, check out NASA's #MessageToVoyager website.

nextArticle.image_alt|e
iStock
Astronomers Discover 12 New Moons Around Jupiter
iStock
iStock

As the largest planet with the largest moon in our solar system, Jupiter is a body of record-setting proportions. The fifth planet from the Sun also boasts the most moons—and scientists just raised the count to 79.

A team of astronomers led by Scott S. Sheppard of the Carnegie Institute for Science confirmed the existence of 12 additional moons of Jupiter, 11 of which are “normal” outer moons, according to a statement from the institute. The outlier is being called an “oddball” for its bizarre orbit and diminutive size, which is about six-tenths of a mile in diameter.

The moons were first observed in the spring of 2017 while scientists looked for theoretical planet beyond Pluto, but several additional observations were needed to confirm that the celestial bodies were in fact orbiting around Jupiter. That process took a year.

“Jupiter just happened to be in the sky near the search fields where we were looking for extremely distant solar system objects, so we were serendipitously able to look for new moons around Jupiter while at the same time looking for planets at the fringes of our solar system,” Sheppard said in a statement.

Nine of the "normal" moons take about two years to orbit Jupiter in retrograde, or counter to the direction in which Jupiter spins. Scientists believe these moons are what’s left of three larger parent bodies that splintered in collisions with asteroids, comets, or other objects. The two other "normal" moons orbit in the prograde (same direction as Jupiter) and take less than a year to travel around the planet. They’re also thought to be chunks of a once-larger moon.

The oddball, on the other hand, is “more distant and more inclined” than the prograde moons. Although it orbits in prograde, it crosses the orbits of the retrograde moons, which could lead to some head-on collisions. The mass is believed to be Jupiter’s smallest moon, and scientists have suggested naming it Valetudo after the Roman goddess of health and hygiene, who happens to be the great-granddaughter of the god Jupiter.

nextArticle.image_alt|e
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017
Look Closely—Every Point of Light in This Image Is a Galaxy
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017

Even if you stare closely at this seemingly grainy image, you might not be able to tell there’s anything to it besides visual noise. But it's not static—it's a sliver of the distant universe, and every little pinprick of light is a galaxy.

As Gizmodo reports, the image was produced by the European Space Agency’s Herschel Space Observatory, a space-based infrared telescope that was launched into orbit in 2009 and was decommissioned in 2013. Created by Herschel’s Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer (PACS), it looks out from our galaxy toward the North Galactic Pole, a point that lies perpendicular to the Milky Way's spiral near the constellation Coma Berenices.

A close-up of a view of distant galaxies taken by the Herschel Space Observatory
ESA/Herschel/SPIRE; M. W. L. Smith et al 2017

Each point of light comes from the heat of dust grains between different stars in a galaxy. These areas of dust gave off this radiation billions of years before reaching Herschel. Around 1000 of those pins of light belong to galaxies in the Coma Cluster (named for Coma Berenices), one of the densest clusters of galaxies in the known universe.

The longer you look at it, the smaller you’ll feel.

[h/t Gizmodo]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios