CLOSE
Courtesy of the Royal Tyrrell Museum of Palaeontology, Drumheller, Canada
Courtesy of the Royal Tyrrell Museum of Palaeontology, Drumheller, Canada

The Exquisitely Preserved ‘Mona Lisa of Dinosaurs’ Has Been Named

Courtesy of the Royal Tyrrell Museum of Palaeontology, Drumheller, Canada
Courtesy of the Royal Tyrrell Museum of Palaeontology, Drumheller, Canada

Experts say the spectacularly well-preserved nodosaur now on display at Canada's Royal Tyrrell Museum (RTM) represents a new species—a hulking, armored beast that was not too proud to hide when predators were on the prowl. The research team described this "dinosaur equivalent of a tank" in the most recent issue of the journal Current Biology.

The nodosaur's massive remains were uncovered by miners in Alberta in 2011 in what was a seabed about 110 million years ago, when the creature died. The enormous block of stone and fossil was transferred to the museum, where technician Mark Mitchell set about freeing the specimen from its final resting place.

A researcher with a small pick prepares a dinosaur specimen.

The task took Mitchell more than five years and 7000 hours. Every one of them was worth it: The results are breathtaking.

Closeup of a nodosaur fossil.

"This nodosaur is truly remarkable in that it is completely covered in preserved scaly skin, yet is also preserved in three dimensions, retaining the original shape of the animal. The result is that the animal looks almost the same today as it did back in the Early Cretaceous," museum scientist Caleb Brown said in a statement. "If you just squint your eyes a bit, you could almost believe it was sleeping. ... It will go down in science history as one of the most beautiful and best preserved dinosaur specimens—the Mona Lisa of dinosaurs."

While Mitchell chipped away at the stone tomb, Brown and his colleagues began trying to identify the animal inside. They knew it was a member of the stocky, heavily armored nodosaur family, but they couldn't figure out which one.

Eventually they realized why—it's not a species or genus anyone has ever seen before. Even so, the incredible quality of the museum's specimen made it possible for them to reconstruct what it might have looked like in life.

Chemical analysis of the nodosaur's scales and horn sheaths indicated the presence of a reddish-gold pigment called pheomelanin. In people, pheomelanin is what gives redheads their coppery locks and lends our lips and nipples their pinkish color. In nodosaurs, it probably turned them orange.

Some parts of them, at least. The researchers realized that their specimen, a herbivore, most likely had a pale belly, like a squirrel, and darker coloration on its back. This color patterning is called countershading. It's used to help animals blend into their surroundings and hide from predators.

That's right: Apparently the dinosaur's massive punk spikes and tough hide were not enough to keep it safe. It needed camouflage, too.

"Strong predation on a massive, heavily armored dinosaur illustrates just how dangerous the dinosaur predators of the Cretaceous must have been," Brown said.

The team named their new species Borealopelta markmitchelli. The genus name is a combination of "borealis" (Latin for "northern") and "pelta" (Greek for "shield'"). The species name is a tribute to Mitchell, the scientists write, for his "patient and skilled" revealing of their pride and joy.

All images courtesy of the Royal Tyrell Museum.

nextArticle.image_alt|e
iStock
arrow
science
Prehistoric Ticks Once Drank Dinosaur Blood, Fossil Evidence Shows
iStock
iStock

Ticks plagued the dinosaurs, too, as evidenced by a 99-million-year old parasite preserved inside a hunk of ancient amber. Entomologists who examined the Cretaceous period fossil noticed that the tiny arachnid was latched to a dinosaur feather—the first evidence that the bloodsuckers dined on dinos, according to The New York Times. These findings were recently published in the journal Nature Communications.

Ticks are one of the most common blood-feeding parasites. But experts didn’t know what they ate in prehistoric times, as parasites and their hosts are rarely found together in the fossil record. Scientists assumed they chowed down on early amphibians, reptiles, and mammals, according to NPR. They didn’t have hard evidence until study co-author David Grimaldi, an entomologist at the American Museum of History, and his colleagues spotted the tick while perusing a private collection of Myanmar amber.

A 99-million-year-old tick encased in amber, grasping a dinosaur feather.
Cornupalpatum burmanicum hard tick entangled in a feather. a Photograph of the Burmese amber piece (Bu JZC-F18) showing a semicomplete pennaceous feather. Scale bar, 5 mm. b Detail of the nymphal tick in dorsal view and barbs (inset in a). Scale bar, 1 mm. c Detail of the tick’s capitulum (mouthparts), showing palpi and hypostome with teeth (arrow). Scale bar, 0.1 mm. d Detail of a barb. Scale bar, 0.2 mm. e Drawing of the tick in dorsal view indicating the point of entanglement. Scale bar, 0.2 mm. f Detached barbule pennulum showing hooklets on one of its sides (arrow in a indicates its location but in the opposite side of the amber piece). Scale bar, 0.2 mm
Peñalver et al., Nature Communications

The tick is a nymph, meaning it was in the second stage of its short three-stage life cycle when it died. The dinosaur it fed on was a “nanoraptor,” or a tiny dino that was roughly the size of a hummingbird, Grimaldi told The Times. These creatures lived in tree nests, and sometimes met a sticky end after tumbling from their perches into hunks of gooey resin. But just because the nanoraptor lived in a nest didn’t mean it was a bird: Molecular dating pinpointed the specimen as being at least 25 million years older than modern-day avians.

In addition to ticks, dinosaurs likely also had to deal with another nest pest: skin beetles. Grimaldi’s team located several additional preserved ticks, and two were covered in the insect’s fine hairs. Skin beetles—which are still around today—are scavengers that live in aerial bird homes and consume molted feathers.

“These findings shed light on early tick evolution and ecology, and provide insights into the parasitic relationship between ticks and ancient relatives of birds, which persists today for modern birds,” researchers concluded in a news release.

[h/t The New York Times]

nextArticle.image_alt|e
iStock
arrow
paleontology
Extinct Penguin Species Was the Size of an Adult Human
iStock
iStock

A penguin that waddled across the ice 60 million years ago would have dwarfed the king and emperor penguins of today, according to the Associated Press. As indicated by fossils recently uncovered in New Zealand, the extinct species measured 5 feet 10 inches while swimming, surpassing the height of an average adult man.

The discovery, which the authors say is the most complete skeleton of a penguin this size to date, is laid out in a study recently published in Nature Communications. When standing on land, the penguin would have measured 5 feet 3 inches, still a foot taller than today’s largest penguins at their maximum height. Researchers estimated its weight to have been about 223 pounds.

Kumimanu biceae, a name that comes from Maori words for “monster" and "bird” and the name of one researcher's mother, last walked the Earth between 56 million and 60 million years ago. That puts it among the earliest ancient penguins, which began appearing shortly after large aquatic reptiles—along with the dinosaurs—went extinct, leaving room for flightless carnivorous birds to enter the sea.

The prehistoric penguin was a giant, even compared to other penguin species of the age, but it may not have been the biggest penguin to ever live. A few years ago, paleontologists discovered 40-million-year-old fossils they claimed belonged to a penguin that was 6 feet 5 inches long from beak to tail. But that estimate was based on just a couple bones, so its actual size may have varied.

[h/t AP]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios