CLOSE
Naonobu Noda/NARO
Naonobu Noda/NARO

Japanese Scientists Engineer 'True Blue' Chrysanthemums

Naonobu Noda/NARO
Naonobu Noda/NARO

The land of the square watermelon has done it again: Japanese scientists have created the world's first blue chrysanthemums. They described their process and results in the journal Science Advances.

Nature doesn't make a whole lot of blue things. Out of the 280,000 species of flowering plants on Earth, less than 10 percent make blue flowers. But these are hipster flowers, flying low under the public radar. There's no real market for them. Blue roses, carnations, lilies, or chrysanthemums, though: now those are products florists could take to the bank.

Or they could, if scientists could get them to work. Flower experts have been trying to breed blue flowers for centuries, to no avail. The horticultural societies of Britain and Belgium even put up a cash prize in the 1800s for the first person to breed a true blue rose. Nobody won.

But bioengineering is a lot more sophisticated than it used to be. Today's plant experts can tinker with an organism's genetic code to coax it into doing things nature never intended it to do. By 2005, scientists sponsored by the Japanese company Suntory had that blue rose—although "blue" may be a generous term.

Next up for researchers was the chrysanthemum, a species that may be even more significant than the rose in Japan. Chrysanthemums are everywhere there, appearing on coins, passports, clothing, and art. They symbolize autumn, but also the monarchy, the imperial throne, and the nation of Japan itself. Making a blue mum would be a huge cultural achievement (not to mention a potential goldmine).

Researchers from Suntory and Japan's National Agriculture and Food Research Organization decided to swipe a few tricks from two preexisting blue flower species, Canterbury bells and the butterfly pea. Both species owe their color to pigments called anthocyanins. These pigments appear in chrysanthemums, too, but a slightly different molecular structure means that they make red and purple petals, not blue ones.

By swiping multiple genes from the two blue species and adding them to the mum's genetic blueprint, the scientists were able to reshape the chrysanthemum anthocyanins to make what botanists call "true blue."

Blue color swatches among blue chrysanthemum flowers.
Naonobu Noda / NARO

Once again, "blue" may be a generous term.

"Their flowers are like a cool lavender at best," artist and biohacker Sebastian Cocioba, who is trying to genetically engineer a blue rose, told Gizmodo. "I could never feel comfortable calling that blue."

The researchers acknowledge that they've got more work to do, and say they have ideas for how to create a bluer flower. "However," lead author Naonobu Noda noted to Gizmodo, "as there is no [single] gene to realize it, it may be difficult."

nextArticle.image_alt|e
iStock
arrow
Space
Mysterious 'Hypatia Stone' Is Like Nothing Else in Our Solar System
iStock
iStock

In 1996, Egyptian geologist Aly Barakat discovered a tiny, one-ounce stone in the eastern Sahara. Ever since, scientists have been trying to figure out where exactly the mysterious pebble originated. As Popular Mechanics reports, it probably wasn't anywhere near Earth. A new study in Geochimica et Cosmochimica Acta finds that the micro-compounds in the rock don't match anything we've ever found in our solar system.

Scientists have known for several years that the fragment, known as the Hypatia stone, was extraterrestrial in origin. But this new study finds that it's even weirder than we thought. Led by University of Johannesburg geologists, the research team performed mineral analyses on the microdiamond-studded rock that showed that it is made of matter that predates the existence of our Sun or any of the planets in the solar system. And, its chemical composition doesn't resemble anything we've found on Earth or in comets or meteorites we have studied.

Lead researcher Jan Kramers told Popular Mechanics that the rock was likely created in the early solar nebula, a giant cloud of homogenous interstellar dust from which the Sun and its planets formed. While some of the basic materials in the pebble are found on Earth—carbon, aluminum, iron, silicon—they exist in wildly different ratios than materials we've seen before. Researchers believe the rock's microscopic diamonds were created by the shock of the impact with Earth's atmosphere or crust.

"When Hypatia was first found to be extraterrestrial, it was a sensation, but these latest results are opening up even bigger questions about its origins," as study co-author Marco Andreoli said in a press release.

The study suggests the early solar nebula may not have been as homogenous as we thought. "If Hypatia itself is not presolar, [some of its chemical] features indicate that the solar nebula wasn't the same kind of dust everywhere—which starts tugging at the generally accepted view of the formation of our solar system," Kramer said.

The researchers plan to further probe the rock's origins, hopefully solving some of the puzzles this study has presented.

[h/t Popular Mechanics]

nextArticle.image_alt|e
iStock
arrow
science
Ocean Waves Are Powerful Enough to Toss Enormous Boulders Onto Land, Study Finds
iStock
iStock

During the winter of 2013-2014, the UK and Ireland were buffeted by a number of unusually powerful storms, causing widespread floods, landslides, and coastal evacuations. But the impact of the storm season stretched far beyond its effect on urban areas, as a new study in Earth-Science Reviews details. As we spotted on Boing Boing, geoscientists from Williams College in Massachusetts found that the storms had an enormous influence on the remote, uninhabited coast of western Ireland—one that shows the sheer power of ocean waves in a whole new light.

The rugged terrain of Ireland’s western coast includes gigantic ocean boulders located just off a coastline protected by high, steep cliffs. These massive rocks can weigh hundreds of tons, but a strong-enough wave can dislodge them, hurling them out of the ocean entirely. In some cases, these boulders are now located more than 950 feet inland. Though previous research has hypothesized that it often takes tsunami-strength waves to move such heavy rocks onto land, this study finds that the severe storms of the 2013-2014 season were more than capable.

Studying boulder deposits in Ireland’s County Mayo and County Clare, the Williams College team recorded two massive boulders—one weighing around 680 tons and one weighing about 520 tons—moving significantly during that winter, shifting more than 11 and 13 feet, respectively. That may not sound like a significant distance at first glance, but for some perspective, consider that a blue whale weighs about 150 tons. The larger of these two boulders weighs more than four blue whales.

Smaller boulders (relatively speaking) traveled much farther. The biggest boulder movement they observed was more than 310 feet—for a boulder that weighed more than 44 tons.

These boulder deposits "represent the inland transfer of extraordinary wave energies," the researchers write. "[Because they] record the highest energy coastal processes, they are key elements in trying to model and forecast interactions between waves and coasts." Those models are becoming more important as climate change increases the frequency and severity of storms.

[h/t Boing Boing]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios