Flying Telescopes Will Watch the Total Solar Eclipse from the Air

If you've ever stood on the tips of your toes to reach something on a high shelf, you get it: Sometimes a little extra height makes all the difference. Although in this case, we're talking miles, not inches, as scientists are sending telescopes up on airplanes to monitor conditions on the Sun and Mercury during the upcoming total eclipse.

Weather permitting, the Great American Eclipse (as some are calling it) will be at least partially visible from anywhere in the continental U.S. on August 21. It will be the first time an eclipse has been so widely visible in the U.S. since 1918 and represents an incredible opportunity not only for amateur sky-watchers but also for scientists from coast to coast.

But why settle for gawking from the ground when there's an even better view up in the sky?

Scientists at the Southwest Research Institute (SwRI) have announced plans to mount monitoring equipment on NASA research planes. The telescopes, which contain super-sensitive, high-speed, and infrared cameras, will rise 50,000 feet (about 9.5 miles) above the Earth's surface to sneak a very special peek at the goings-on in our Sun and its nearest planetary buddy.

Gaining altitude will not only bring the instruments closer to their targets but should also help them avoid the meteorological chaos down below.

"Being above the weather guarantees perfect observing conditions, while being above more than 90 percent of Earth's atmosphere gives us much better image quality than on the ground," SwRI co-investigator Constantine Tsang said in a statement. "This mobile platform also allows us to chase the eclipse shadow, giving us over seven minutes of totality between the two planes, compared to just two minutes and 40 seconds for a stationary observer on the ground."

The darkness of that shadow will blot out much of the Sun's overpowering daily brightness, giving researchers a glimpse at rarely seen solar emissions.

"By looking for high-speed motion in the solar corona, we hope to understand what makes it so hot," senior investigator Amir Caspi said. "It's millions of degrees Celsius—hundreds of times hotter than the visible surface below. In addition, the corona is one of the major sources of electromagnetic storms here at Earth. These phenomena damage satellites, cause power grid blackouts, and disrupt communication and GPS signals, so it's important to better understand them."

The temporary blackout will also create fine conditions for peeping at Mercury's night side. Tsang says, "How the temperature changes across the surface gives us information about the thermophysical properties of Mercury's soil, down to depths of about a few centimeters—something that has never been measured before."

Why Do Astronauts Use Space Pens Instead of Pencils?

by Alex Carter

It's often said that NASA spent millions of dollars developing a pen that could write in zero gravity, while the Russians just used pencils. It was a warning about looking for a high-tech solution to a mundane problem, of American excess vs. Russian sensibility.

It's also entirely false.

To understand why NASA was so keen on a workable space pen, you have to understand that the pencil is not suited for space travel. The problem is that they have a habit of breaking, shattering, and leaving graphite dust behind. The wood, too, can make it a serious fire risk in the pressurized, oxygen-rich capsule. All of these common issues become life-threatening hazards in space.

Still, there were attempts to bring pencils into space. In 1965, the agency famously ordered 34 specially designed mechanical pencils in hopes of finding the perfect writing tool for astronauts. But at $128 each, they weren't exactly cheap, and it only got worse when the public got wind of the price. Thankfully, an alternative was not too far behind.

Astronaut Walt Cunningham, pilot of the Apollo 7 mission, uses the Fisher Space Pen while in flight.
Astronaut Walt Cunningham, pilot of the Apollo 7 mission, uses the Fisher Space Pen while in flight.
NASA

The Space Pen was invented by Paul Fisher, head of Fisher Pen Company. Unlike a typical pen, the Fisher Space Pen uses compressed nitrogen to force ink out of the nozzle, instead of using gravity to make it flow. This made it the ideal device for writing in space, while upside down, or submerged underwater. It wrote crisp and clean, without the safety concerns of a pencil.

Fisher contacted NASA to give his pens a try in 1965 and in 1967, after months of testing, they were impressed enough to bulk buy 400 of them for future missions. Contrary to those urban legends, NASA didn't commission the pen or contribute any funding to it. The Soviets soon ditched their grease pencils and were eventually buying the same Fisher pens as NASA, too. The price? After a 40 percent discount from Fisher, both space agencies were paying $2.39 a pen.

The Fisher Space Pens made their debut in 1968 on the Apollo 7 mission and have been involved in all manned missions since.

So, the short reason is that astronauts only used pencils when they were waiting for something better to come along. As soon as it did, they switched and never looked back. Even the Russians thought it was a good idea.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

nextArticle.image_alt|e
iStock
New Study Says We Could Be Alone in the Universe
iStock
iStock

There's a good chance that humans are the only intelligent life in the galaxy, according to a new study submitted to the journal Proceedings of the Royal Society of London A. As Quartz reports, researchers at Oxford University's Future of Humanity Institute applied existing knowledge of biology, chemistry, and cosmology to the Drake equation (below). It was created by astronomer Frank Drake in 1961 as an attempt to calculate the number of intelligent civilizations that could be in our galaxy. He included factors like the average rate of star formation and the average lifespan of intelligent civilizations.

Image showing text of the Drake equation and explaining what each variable means
Equation: University of Rochester; Image: Hannah McDonald

They estimate there’s a 53 to 99.6 percent chance we’re alone in the galaxy, and a 39 to 85 percent chance we’re the only intelligent life to be found in the entire universe.

“Where are they?” the researchers ask, referring to the classic Fermi Paradox, which asserts that intelligent extraterrestrial beings exist and that they should have visited Earth by now. “Probably extremely far away, and quite possibly beyond the cosmological horizon and forever unreachable.”

Seth Shostak doesn’t buy it. Shostak is senior astronomer at the SETI Institute, a research organization that analyzes radio signals for signs of extraterrestrial intelligence. Part of the challenge with mathematical modeling like this, Shostak says, is that the data are limited; scientists just haven’t looked at very many star systems.

“I could walk outside here in Mountain View, California and not see too many hippos strolling the streets,” he tells Mental Floss. “But it would be incorrect for me to say on that rather limited basis that there’s probably no hippos anywhere. It’s a big conclusion to make on the basis of a local observation.”

Moreover, they may not even know what to look for in the solar systems they have reviewed. The SETI Institute examines radio communications and light signals, but there’s always the possibility that an intelligent civilization has attempted to contact us using means we may not have developed or even considered yet.

The Fermi Paradox itself may be naïve in its understanding of the universe, Shostak says. “You could have said the same thing about Antarctica in the 1700s. A lot of people wondered, ‘Is there a continent down there?’ On the one hand, you could argue there was [a continent], and on the other hand, you could say, ‘Look, there’s an awful lot of water in the Pacific and the Atlantic, and there’s no continents there, so why should there be one at the bottom of the ocean?’”

In other words, any conclusions about the existence of extraterrestrial intelligence are likely to be presumptive, made before any solid data is released or discovered. The truth may be out there, Shostak says. We just haven’t found it yet.

[h/t Quartz]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios