Flying Telescopes Will Watch the Total Solar Eclipse from the Air

If you've ever stood on the tips of your toes to reach something on a high shelf, you get it: Sometimes a little extra height makes all the difference. Although in this case, we're talking miles, not inches, as scientists are sending telescopes up on airplanes to monitor conditions on the Sun and Mercury during the upcoming total eclipse.

Weather permitting, the Great American Eclipse (as some are calling it) will be at least partially visible from anywhere in the continental U.S. on August 21. It will be the first time an eclipse has been so widely visible in the U.S. since 1918 and represents an incredible opportunity not only for amateur sky-watchers but also for scientists from coast to coast.

But why settle for gawking from the ground when there's an even better view up in the sky?

Scientists at the Southwest Research Institute (SwRI) have announced plans to mount monitoring equipment on NASA research planes. The telescopes, which contain super-sensitive, high-speed, and infrared cameras, will rise 50,000 feet (about 9.5 miles) above the Earth's surface to sneak a very special peek at the goings-on in our Sun and its nearest planetary buddy.

Gaining altitude will not only bring the instruments closer to their targets but should also help them avoid the meteorological chaos down below.

"Being above the weather guarantees perfect observing conditions, while being above more than 90 percent of Earth's atmosphere gives us much better image quality than on the ground," SwRI co-investigator Constantine Tsang said in a statement. "This mobile platform also allows us to chase the eclipse shadow, giving us over seven minutes of totality between the two planes, compared to just two minutes and 40 seconds for a stationary observer on the ground."

The darkness of that shadow will blot out much of the Sun's overpowering daily brightness, giving researchers a glimpse at rarely seen solar emissions.

"By looking for high-speed motion in the solar corona, we hope to understand what makes it so hot," senior investigator Amir Caspi said. "It's millions of degrees Celsius—hundreds of times hotter than the visible surface below. In addition, the corona is one of the major sources of electromagnetic storms here at Earth. These phenomena damage satellites, cause power grid blackouts, and disrupt communication and GPS signals, so it's important to better understand them."

The temporary blackout will also create fine conditions for peeping at Mercury's night side. Tsang says, "How the temperature changes across the surface gives us information about the thermophysical properties of Mercury's soil, down to depths of about a few centimeters—something that has never been measured before."

Neil Armstrong’s Spacesuit Will Go Back on Display for Apollo 11's 50th Anniversary

Phil Plait, Wikimedia Commons // CC BY-SA 2.0
Phil Plait, Wikimedia Commons // CC BY-SA 2.0

Neil Armstrong made history when he became the first person to walk on the Moon 50 years ago. Space exploration has changed since then, but the white space suit with the American flag patch that Armstrong wore on that first walk is still what many people think of when they picture an astronaut. Now, after sitting in storage for a decade, that iconic suit is ready to go on display, according to Smithsonian.

NASA donated Neil Armstrong's suit to the Smithsonian shortly after the Apollo 11 mission. For about 30 years, it was displayed at the National Air and Space Museum in Washington, D.C. Then, in 2006, the museum moved the artifact to storage to minimize damage.

Even away from the exhibit halls, the suit was deteriorating, and the Smithsonian knew it would need to be better preserved if it was to be shown to the public again. In 2015, the institution launched its first-ever Kickstarter campaign and raised more than $700,000 for conservation efforts.

After a multi-year preservation project, the suit will finally return to the museum floor on July 16, 2019—the date that marks 50 years since Apollo 11 launched. This time around, the suit will be displayed on a structure that was custom built to support its interior, protecting it from the weight of gravity. Climate-controlled air will flow through the gear to recreate the stable environment of a storage unit.

Even if you can't make it to the National Air and Space Museum to see Armstrong's space suit in person, soon you'll be able to appreciate it from home in a whole new way. The museum used various scanning techniques to create an intricate 3D model of the artifact. Once the scans are reconfigured for home computers, the Smithsonian's digitization team plans to make an interactive version of the digital model freely available on its website.

[h/t Smithsonian]

What Is the Kitchen Like on the International Space Station?

iStock/Elen11
iStock/Elen11

Clayton C. Anderson:

The International Space Station (ISS) does not really have a "kitchen" as many of us here on Earth might relate to. But, there is an area called the "galley" which serves the purpose of allowing for food preparation and consumption. I believe the term "galley" comes from the military, and it was used specifically in the space shuttle program. I guess it carried over to the ISS.

The Russian segment had the ONLY galley when I flew in 2007. There was a table for three, and the galley consisted of a water system—allowing us to hydrate our food packages (as needed) with warm (tepid) or hot (extremely) water—and a food warmer. The food warmer designed by the Russians was strictly used for their cans of food (about the size of a can of cat food in America). The U.S. developed a second food warmer (shaped like a briefcase) that we could use to heat the more "flexibly packaged" foodstuffs (packets) sent from America.

Later in the ISS lifetime, a second galley area was provided in the U.S. segment. It is positioned in Node 1 (Unity) and a table is also available there for the astronauts' dining pleasures. Apparently, it was added because of the increasing crew size experienced these days (6), to have more options. During my brief visit to ISS in 2010 (12 days or so) as a Discovery crewmember, I found the mealtimes to be much more segregated than when I spent five months on board. The Russians ate in the Russian segment. The shuttle astronauts ate in the shuttle. The U.S. ISS astronauts ate in Node 1, but often at totally different times. While we did have a combined dinner in Node 1 during STS-131 (with the Expedition 23 crew), this is one of the perceived negatives of the "multiple-galley" scenario. My long duration stint on ISS was highlighted by the fact that Fyodor Yurchikhin, Oleg Kotov, and I had every single meal together. The fellowship we—or at least I—experienced during those meals is something I will never, ever forget. We laughed, we argued, we celebrated, we mourned …, all around our zero-gravity "dinner table." Awesome stuff!

This post originally appeared on Quora. Click here to view.

Clayton "Astro Clay" Anderson is an astronaut, motivational speaker, author, and STEAM education advocate.

His award-winning book The Ordinary Spaceman, Astronaut Edition Fisher Space Pen, and new children's books A is for Astronaut; Blasting Through the Alphabet and It's a Question of Space: An Ordinary Astronaut's Answers to Sometimes Extraordinary Questions are available at www.AstroClay.com. For speaking events www.AstronautClayAnderson.com. Follow @Astro_Clay #WeBelieveInAstronauts

SECTIONS

arrow
LIVE SMARTER