CLOSE
iStock
iStock

Scientists Think They Know What Causes Trypophobia

iStock
iStock

Picture a boat hull covered with barnacles, a dried lotus seed pod, milk bubbles on a latte, or a honeycomb. Images of these objects are harmless—unless you're one of the millions of people suffering from trypophobia. Then they're likely to induce intense disgust, nausea, and fear, and make your skin crawl.

Coined fairly recently, the term trypophobia describes the fear of clusters of holes. The phobia isn’t recognized by the Diagnostic and Statistical Manual of Mental Disorders, but its visibility on the internet suggests that for many, it’s very real. Now, scientists in the UK think they've pinpointed the evolutionary mechanism behind the reaction.

Tom Kupfer of the University of Kent and An T. D. Le of the University of Essex shared their findings in the journal Cognition and Emotion. According to their research, trypophobia evolved as a way to avoid infectious disease. Thousands of years ago, if you saw a person covered in boils or a body covered in flies, a natural aversion to the sight would have helped you avoid catching whatever they had.

But being disgusted by skin riddled with pathogens or parasites alone doesn't mean you're trypophobic; after all, keeping your distance from potential infection is smart. But trypophobia seems to misplace that reaction, as the authors write: "Trypophobia may be an exaggerated and overgeneralized version of this normally adaptive response."

Lotus pod.
Lotus seed pods are a common trigger of trypophobia.

This explanation is not entirely new, but until now little research has been done into whether it's accurate. To test their hypothesis, the scientists recruited 376 self-described trypophobes from online forums, and another 304 college students who didn't claim to have the affliction. Both groups were shown two sets of images: The first depicted clusters of circle-shaped marks on animals and human body parts (the "disease-relevant cluster images"); the second showed clusters of holes on inanimate objects like bricks and flower pods ("disease-irrelevant cluster images"). While both groups reported feeling repulsed by the first collection of photographs, only the trypophobes felt the same about the pictures that had nothing to do with infection.

Another takeaway from the study is that trypophobia is more related to sensations of disgust than fear. This sets it apart from more common phobias like arachnophobia (fear of spiders) or acrophobia (fear of heights). And you don't have to be trypophobic to be disgusted by a video of Suriname toadlets being born through holes in their mother's back. We can all be grossed out by that.

nextArticle.image_alt|e
iStock
arrow
Space
Mysterious 'Hypatia Stone' Is Like Nothing Else in Our Solar System
iStock
iStock

In 1996, Egyptian geologist Aly Barakat discovered a tiny, one-ounce stone in the eastern Sahara. Ever since, scientists have been trying to figure out where exactly the mysterious pebble originated. As Popular Mechanics reports, it probably wasn't anywhere near Earth. A new study in Geochimica et Cosmochimica Acta finds that the micro-compounds in the rock don't match anything we've ever found in our solar system.

Scientists have known for several years that the fragment, known as the Hypatia stone, was extraterrestrial in origin. But this new study finds that it's even weirder than we thought. Led by University of Johannesburg geologists, the research team performed mineral analyses on the microdiamond-studded rock that showed that it is made of matter that predates the existence of our Sun or any of the planets in the solar system. And, its chemical composition doesn't resemble anything we've found on Earth or in comets or meteorites we have studied.

Lead researcher Jan Kramers told Popular Mechanics that the rock was likely created in the early solar nebula, a giant cloud of homogenous interstellar dust from which the Sun and its planets formed. While some of the basic materials in the pebble are found on Earth—carbon, aluminum, iron, silicon—they exist in wildly different ratios than materials we've seen before. Researchers believe the rock's microscopic diamonds were created by the shock of the impact with Earth's atmosphere or crust.

"When Hypatia was first found to be extraterrestrial, it was a sensation, but these latest results are opening up even bigger questions about its origins," as study co-author Marco Andreoli said in a press release.

The study suggests the early solar nebula may not have been as homogenous as we thought. "If Hypatia itself is not presolar, [some of its chemical] features indicate that the solar nebula wasn't the same kind of dust everywhere—which starts tugging at the generally accepted view of the formation of our solar system," Kramer said.

The researchers plan to further probe the rock's origins, hopefully solving some of the puzzles this study has presented.

[h/t Popular Mechanics]

nextArticle.image_alt|e
iStock
arrow
science
Ocean Waves Are Powerful Enough to Toss Enormous Boulders Onto Land, Study Finds
iStock
iStock

During the winter of 2013-2014, the UK and Ireland were buffeted by a number of unusually powerful storms, causing widespread floods, landslides, and coastal evacuations. But the impact of the storm season stretched far beyond its effect on urban areas, as a new study in Earth-Science Reviews details. As we spotted on Boing Boing, geoscientists from Williams College in Massachusetts found that the storms had an enormous influence on the remote, uninhabited coast of western Ireland—one that shows the sheer power of ocean waves in a whole new light.

The rugged terrain of Ireland’s western coast includes gigantic ocean boulders located just off a coastline protected by high, steep cliffs. These massive rocks can weigh hundreds of tons, but a strong-enough wave can dislodge them, hurling them out of the ocean entirely. In some cases, these boulders are now located more than 950 feet inland. Though previous research has hypothesized that it often takes tsunami-strength waves to move such heavy rocks onto land, this study finds that the severe storms of the 2013-2014 season were more than capable.

Studying boulder deposits in Ireland’s County Mayo and County Clare, the Williams College team recorded two massive boulders—one weighing around 680 tons and one weighing about 520 tons—moving significantly during that winter, shifting more than 11 and 13 feet, respectively. That may not sound like a significant distance at first glance, but for some perspective, consider that a blue whale weighs about 150 tons. The larger of these two boulders weighs more than four blue whales.

Smaller boulders (relatively speaking) traveled much farther. The biggest boulder movement they observed was more than 310 feet—for a boulder that weighed more than 44 tons.

These boulder deposits "represent the inland transfer of extraordinary wave energies," the researchers write. "[Because they] record the highest energy coastal processes, they are key elements in trying to model and forecast interactions between waves and coasts." Those models are becoming more important as climate change increases the frequency and severity of storms.

[h/t Boing Boing]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios