CLOSE
Original image
Thinkstock

6 Surprising Examples of Human Vestigiality

Original image
Thinkstock

People have speculated over the nature of seemingly useless physical characteristics in living things for thousands of years. It wasn’t until the late 18th and early 19th centuries, though, that the idea of vestigiality would enter the public imagination via the writings of a couple of French naturalists and pre-emptive Darwinists, Étienne Geoffroy Saint-Hilaire and Jean-Baptiste Lamarck. Darwin would, of course, go on to redefine the field of human biology some half-century later with On the Origin of Species, but it was his second book, 1871’s The Descent of Man, where he listed a number of the structures we know today as vestigial for the first time, among them the appendix, tail bone, and wisdom teeth.

The German anatomist Robert Wiedersheim ultimately coined the term in his 1893 book The Structure of Man: An Index to His Past History, including 86 organs believed to be the “vestiges” of human evolution. We now understand a number of those from the Wiedersheim list to be vital (i.e., the thymus and pituitary gland), but others have emerged to take their place. Here are six of the more surprising examples of human vestigiality.

1. GOOSE BUMPS

Known medically as cutis anserina, goose bumps (so dubbed for the skin’s resemblance to a plucked goose) are triggered reflexively by a range of stimuli, including fear, pleasure, amazement, nostalgia, and coldness. The mechanism that causes the reaction, piloerection, triggers the tiny muscles at the base of each body hair to contract, eliciting a tiny bump. The reflex played a crucial role in the fight-or-flight response of our human evolutionary ancestors, who were covered in body hair: The standing hairs could make primitive man appear larger to predators, perhaps averting the threat. When unprotected and faced with cold, goose bumps would act as added insulation, raising the hair up to create an extra layer of warmth. Though piloerection remains a useful defense for many animals (think of an annoyed porcupine or cornered cat), humans, having long ago shed the bulk of our body hair, retain it almost exclusively as an emotional response.

2. JUNK DNA

This term refers to portions of our human genome for which no functional role has been discovered. Though controversial, many scientists believe that much of our DNA exists simply as remnants of some purpose long past served. Among the sequences of DNA in our bodies, a good portion of those have traces of genetic fragments called pseudogenes and transposons, indicating a defect in the strand that could’ve been caused by a virus or some other mutation incurred in the course of our evolutionary history. Like any vestigial structure, we retain pieces of this genetic material because it really isn’t causing any trouble: Century after century, the “junk” sequence is duplicated and passed on, even if it no longer has a use.

3. PLICA SEMILUNARIS

This tiny fold of skin in the corner of the eye is a vestige of the nictitating membrane—essentially, a third eyelid from a time when we needed something like that. Still present in birds, reptiles, and fish, the fully functioning structure is translucent and draws across the eye lengthwise both for protection and to keep the surface moist while retaining sight. At some point primitive humans lost the use for it, but retained a small piece along with its associated muscles (also vestigial). The semilunaris is one of a handful of vestigialities that are more pronounced or prevalent in certain ethnic groups—in this case, Africans and Indigenous Australians.

4. MUSCLES

As we’ve evolved, having to rely less on our physicality, a number of muscles throughout the body have lost utility, though many of us still have them. This category of vestigiality is heavily determined by ethnicity. The occipitalis minor, for example, is a thin, banded muscle at the base of the skull that functions to move the scalp. Exhibiting a wild geographical variance, all Malays are born with it, half of all Japanese, and a third of Europeans, but it’s never present in Melanesians. The occipitalis joins to the auricular muscles, which once allowed us to move our ears to better hear predators, but are now pretty much nonfunctional.

Other vestigial muscles include the palmaris longus, the ropey tendon that tenses in the bottom wrist when you clench your hand; the pyramidalis in the abdomen, which 20 percent of all humans lack; and the plantaris in the leg, which still aids slightly in knee flexion, but whose contribution is so trivial that it's become better known as a tendon which surgeons commonly remove to graft into other areas of the body compromised by injury.

5. PALMAR GRASP REFLEX

If there’s one thing babies are good at, it’s squeezing your finger when you place it in their hand (one early study demonstrated how strong the grip can actually be). Though we do this primarily as a way to engage, the child is simply reacting to an evolutionary stimulus. When we were still covered in body hair, an infant would have used this reflex to cling to its mother’s coat. This provided useful for portability and, in the case that danger had to be evaded, not having to carry the child left the mother with both hands free to escape, maybe by climbing a tree. The reflex is also active in the feet, noticeable in the way an infant’s feet curl in when sitting, but both reflexes usually disappear around six months.

6. OLFACTION

Let’s call our sense of smell vestigialish. Though we obviously still use it every day, its function and role in humans is greatly reduced from what it once was. Animals with the most acute sense of smell are those that still rely on it for tracking food, avoiding predators, or for mating purposes. Since we now have grocery stores, no natural enemies, and OkCupid, olfaction is more of a trait of convenience at this point (though there is evidence that pheromones may play a role in human interaction). Unlike the other examples on this list, the ability to smell can still aid in survival, though, by alerting you to a toxicity that’s otherwise invisible, such as a gas leak.

Original image
María Ríos et al / PLOS One
arrow
Animals
Scientists Unearth a Giraffe Ancestor That Had Four Horns Instead of Two
Original image
María Ríos et al / PLOS One

The recently uncovered fossil of an early giraffe ancestor exhibits some noticeable differences from its modern giraffe descendants. It's several feet shorter, roamed Europe instead of Africa, and sports four horns on its head instead of two. As The New York Times reports, the discovery, outlined in a recent study in the journal PLOS One, sheds new light on the evolutionary history of the long-necked mammals.

The fossil belongs to a newly discovered species of extinct giraffe dubbed Decennatherium rex. It was excavated near Madrid, Spain along with the remains of three other specimens of the same animal, but the other fossils don't compare to the near-complete condition of the first. The creatures lived in the area 9 million years ago, moving the timeline of giraffids' presence in Europe further back than experts previously thought.

The ancient species stood 9 feet tall, making it shorter than today's giraffes. While D. rex lacked the modern giraffe's distinctive towering neck, paleontologists were able to classify it as a member of the same family by looking for its double-lobed canine teeth and the bony protrusions on its head called ossicones. Giraffes and okapis are the only remaining members of their family (though the giraffes we think of as one species may actually consist of four), and they both have one set of two ossicones that rise straight from the top of the skull.

Artist rendering of giraffe relative.

In addition to the two small horns at the front of its head, D. rex also appears to have had a second set. This feature differed in females and males: In the female D. rex, ossicones grew to be about 2 inches, while in males their second set could reach up to 16 inches. Though they varied in size, the fact that ossicones appeared in both sexes suggests that they didn't just evolve as a way for males to compete for mates.


The details of giraffe evolution, like how the species developed its elongated neck, are mysteries scientists are just starting to unravel. This most recent discovery adds another important link in the long history of the Giraffidae family.

[h/t The New York Times]

All images courtesy of María Ríos et al. in PLOS One

Original image
iStock
arrow
The Body
8 Little Known Facts About the Temple
Original image
iStock

The human body is an amazing thing. For each one of us, it’s the most intimate object we know. And yet most of us don’t know enough about it: its features, functions, quirks, and mysteries. Our series The Body explores human anatomy, part by part. Think of it as a mini digital encyclopedia with a dose of wow.

 

At the edges of the eyebrows, you’ll find the temple, the flat, tender side of the head where you often press your fingers to relieve a headache. In movies, one karate chop to this area can allegedly kill a person, but is this really true? What lies beneath that smooth surface of skin that’s so delicate? To learn more, Mental Floss spoke to Dr. Abbas Anwar, an otolaryngologist and head and neck surgeon at Southern California Head and Neck Medical Group in Santa Monica.

1. THE TEMPLE IS A JUNCTURE.

profile of man
iStock

It's technically where four skull bones—the frontal, parietal, temporal, and sphenoid—meet in the skull. This vulnerable juncture is called the pterion, which means "wing" in Greek but sounds like a kind of dinosaur.

2. IT REVEALS A DISTANT LINK TO REPTILES.

lizard on branch
iStock

The temporal bone itself is made up of five smaller parts, which fuse together before birth. One of these pieces, called the tympanic part, may be evolutionarily linked to the angular bone in the lower jaws of reptiles.

3. IT'S THE THINNEST PART OF THE SKULL …

profile of human skull
iStock

While these skull bones are "relatively strong," though thin, Anwar tells Mental Floss, the point at which they meet is the weakest point because there's no solid bone beneath them. "As such, this area is at risk with direct horizontal blows."

4. … WHICH IS WHY MAORI WARRIORS CRAFTED A SPECIAL WEAPON TO CRUSH IT.

maori stone club
Australian Museum, Wikimedia Commons // CC BY-SA 3.0

When Maori warriors of the first nations tribes of New Zealand and Australia went into battle, one weapon they took with them was the patu onewa, a flat, heavy club carved from stones such as basalt, and sometimes jade, for the specific purpose of delivering a fatal, crushing blow to the temple.

5. THE TEMPLE COVERS A MAJOR ARTERY.

historical medical illustration of head and scalp arteries
iStock

Running below these bones is a large artery known as the middle meningeal artery. It supplies blood to the outer covering of the brain, the meninges. "If hit hard enough, one of the four bones at this point can fracture inward and lacerate the middle meningeal artery," Anwar explains. This can cause an epidural hematoma, essentially "a collection of blood that builds up around the brain and compresses it."

Severe bleeding can cause "catastrophic consequences" if not recognized and treated promptly, including brain herniation (bulging brain tissue), hemiparesis (weakness of one side of the body), and death.

6. IS YOUR TEMPLE A SACRED SPACE?

section of the acropolis in athens
iStock

Etymologists don't entirely agree on the meaning of the word temple, which has multiple origins. It may derive from the Latin word for time, tempus, according to a Dartmouth Medical School anatomy course: "The connection may be that with the passage of time, grey hairs appear here early on. Or it may relate to the pulsations of the underlying superficial temporal artery, marking the time we have left here."

It could also possibly hail from the Greek word temenos, meaning "place cut off," which would explain the idea of a temple of worship as well as that juncture of bones at the side of the head. 

In Old English, tempel meant "any place regarded as occupied by divine presence," which might be code for the brain as the residence of consciousness or God.

More likely it's related to the Greek pterion, which as you'll recall means "wing." In Greek mythology, Hermes, messenger of the gods, wore a helmet with wings, which were positioned over the temples.  

7. IT'S PRONE TO SKIN CANCER THAT'S HARD TO REMOVE.

hand holding scalpel
iStock

Surgeon Gabriel Weston writes in The Guardian that skin cancers frequently turn up in this area from over exposure to the Sun, which makes for a challenging surgical procedure. "It is often not possible simply to sew up the hole in the skin after cutting a cancer out, since doing so can easily distort the contour of the eye," he writes.

To get around the problem, Weston uses a special technique called a Wolfe graft. After cutting away the cancerous lesion, "I measure out a circle of equal size in the skin above the collar-bone (where the skin is similar) and remove it." He grafts this skin patch to the patient's temple "with tiny silk sutures." 

8. BRAIN FREEZE ISN'T IN YOUR BRAIN.

three ice cream cones
iStock

Sometimes when you eat or drink something cold too quickly, you get brain freeze, which can feel like someone has taken knives to your temples. But the pain isn't actually in your brain at all, as brains have no pain receptors. While researchers haven't been able to determine a cause of what's technically called sphenopalatine ganglioneuralgia, or sometimes HICS ("headache attributed to ingestion or inhalation of a cold stimulus"), they theorize that the painful freeze you experience is likely caused by a quick cooling of the blood in the back of your throat at the juncture your internal carotid and anterior cerebral arteries, which can cause spasms or constrictions of the arterial branches.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios