CLOSE
Hulton Archive/Getty Images
Hulton Archive/Getty Images

17 Little-Known Facts About Max Planck

Hulton Archive/Getty Images
Hulton Archive/Getty Images

These days, Max Planck’s name comes up most by way of the prestigious scientific institutes named after him. (The Max Planck Society runs 83 throughout Germany and the world.) But who was the real Max Planck, and why would there be so many research centers in his name? Here are 17 facts about the theoretical physicist.

1. HE CREATED ONE OF THE PILLARS OF MODERN PHYSICS.

There are two theories that modern physics uses to explain the universe. There is relativity—Einstein’s work—and there is quantum theory, invented by Planck. In the late 1890s, he began his work studying thermal radiation and found a formula for black-body radiation, one that eventually became Planck’s Law. To explain why his formula worked, he introduced the idea of packets of energy he called “quanta,” giving rise to the branch of quantum physics.

He himself was surprised at the radical nature of his own discoveries, writing, “My futile attempts to put the elementary quantum of action into the classical theory continued for a number of years and they cost me a great deal of effort.”

By the time he died, though, Planck was a legend in the scientific world. “Max Planck was one of the intellectual giants of the 20th century and one of the outstanding intellects of all time,” The New York Times wrote upon his death in October 1947, ranking “with the immortals of science, such as Archimedes, Galileo, Newton, and Einstein.”

2. AND HE HELPED NAME THE OTHER ONE.

Planck helped popularize the term “theory” to describe Einstein’s relativity work. In a 1906 talk, he referred to the model of physics put forth by Einstein as “Relativtheorie,” which became “Relativitätstheorie,” or “relativity theory.” Einstein himself referred to it as the “relativity principle,” but Planck’s terminology caught on.

3. HE WON A NOBEL.

Planck was a highly respected academic in his lifetime. As science writer Barbara Lovett Cline explains, “In Germany at this time only princes and barons were accorded more respect than professors,” and Planck was no exception. He racked up a multitude of awards in his academic career before finally winning the Nobel Prize in Physics at the age of 60. He received more nominations for the Nobel from a wider range of physicists than any other candidate at the time. He finally received the prize for 1918 “in recognition of [his] epoch-making investigations into the quantum theory,” as the president of the Royal Swedish Academy of Sciences said upon presenting the award.

4. HE WAS ONE OF EINSTEIN’S EARLIEST SUPPORTERS.

Planck recognized the importance of Einstein’s work on relativity early, and was one of the first important boosters of his theories. “Einstein may be considered Planck’s second great discovery in physics,” J.L. Heilbron writes in his book The Dilemmas of an Upright Man: Max Planck as a Spokesman for German Science, “and his support, in Einstein’s judgment, was instrumental in securing the swift acceptance of new ideas among physicists.” At the time, Einstein didn’t have a Ph.D. or work at a university, and the support of an established, famous scientist like Planck helped usher him into the mainstream. Though he would remain skeptical of aspects of the younger scientist’s work—like his 1915 research on “light quanta,” or photons—the two remained friends and close colleagues for much of their lives. According to Planck’s obituary in The New York Times, “When the Physical Society of Berlin conferred on him a special medal, he handed a duplicate of it to his friend, Einstein.”

5. HE WAS A GREAT MUSICIAN.

Planck was a gifted pianist and almost dedicated his career to music instead of physics. He hosted musical salons at his home, inviting other physicists and academics as well as professional musicians. Albert Einstein attended [PDF], sometimes picking up the violin to play in quartets or trios with Planck. According to Heilbron, “Planck’s sense of pitch was so perfect that he could scarcely enjoy a concert,” lest it be ruined by an off-key note.

6. A PROFESSOR WARNED HIM NOT TO GO INTO PHYSICS.

Not long after the 16-year-old Planck got to the University of Munich in 1874, physics professor Philipp von Jolly tried to dissuade the young student from going into theoretical physics. Jolly argued that other scientists had basically figured out all there was to know. “In this field, almost everything is already discovered, and all that remains is to fill a few holes,” he told Planck. Luckily, the budding scientist ignored his advice.

7. HIS LECTURES WERE STANDING-ROOM-ONLY.

Though he was described as a bit dry in front of a classroom, Planck’s students loved him. English chemist James Partington said he was “the best lecturer [he] ever heard,” describing Planck’s lectures as crowded, popular affairs. “There were always many standing around the room,” according to Partington. “As the lecture-room was well heated and rather close, some of the listeners would from time to time drop to the floor, but this did not disturb the lecture.”

8. HE KEPT A STRICT SCHEDULE.

In The Dilemmas of an Upright Man, Heilbron describes Planck as an “exact economist with his time.” He ate breakfast precisely at 8 a.m then worked in a flurry until noon every day. In the evenings and during university breaks, though, he relaxed and entertained friends. His routine involved “a rigid schedule during term—writing and lecturing in the morning, lunch, rest, piano, walk, correspondence—and equally unrelenting recreation—mountain climbing without stopping or talking and Alpine accommodation without comfort or privacy,” according to Heilbron.

9. HE WAS A LIFELONG MOUNTAIN CLIMBER.

Planck stayed active throughout his life, hiking and mountain climbing well into old age. In his 80s, he still regularly climbed Alpine peaks reaching more than 9800 feet in height.

10. HE WAS PRETTY GOOD AT TAG.

“Planck loved merry, relaxed company and his home was the center of such conviviality,” famed nuclear physicist Lise Meitner described in 1958 (as quoted by the Max Planck Society). “When the invitations happened to be during the summer term, there would be energetic games in the garden afterwards in which Planck participated with downright childish glee and great adeptness. It was almost impossible not to be tagged by him. And how visibly pleased he was when he had caught someone!"

11. THE GESTAPO INVESTIGATED HIM DURING WORLD WAR II.

Due to his outspoken support of Jewish physicists like Einstein, Planck was labeled by the nationalist Aryan Physics faction of academics as being part of a grand Jewish conspiracy to keep German scientists from appointments in university physics departments Along with other physicists in Einstein’s circle, he was called a “bacteria carrier” and a “white Jew” in the official SS newspaper, Das Schwarze Korps, and his ancestry was investigated by the Gestapo.

12. HE PERSONALLY ASKED HITLER TO LET JEWISH SCIENTISTS KEEP THEIR JOBS.

Though Planck didn’t always support his Jewish colleagues against the Nazis—he chastised Einstein for not returning to Germany after Hitler came to power and eventually dismissed Jewish members of the Kaiser Wilhelm Society (later the Max Planck Society) due to pressure from the Third Reich [PDF]—he did make several stands against Nazi policies. He fought against the inclusion of Nazi party members in the Prussian Academy and, as president of the Kaiser Wilhelm Society, met with Hitler and appealed to the Führer to let certain Jewish scientists keep their jobs.

It didn't work. In 1935, one in five German scientists had been dismissed from their posts (as many as one in four in the field of physics) and supporting Jewish scientists became increasingly risky. Still, in 1935, Planck convened a commemorative meeting of the Kaiser Wilhelm Society to honor the late Jewish chemist Fritz Haber despite an explicit government ban on attending the event. His prominent support of Jewish scientists like Haber and Einstein and refusal to join the Nazi Party eventually resulted in the government forcing him out of his position at the Prussian Academy of Sciences and blocking him from receiving certain professional awards.

13. BUT HE HAD A COMPLICATED RELATIONSHIP WITH THE NAZIS.

He was one of many apolitical civil servants in German academia who hoped that the worst effects of anti-Semitic nationalism would eventually pass, and who wanted to maintain Germany’s importance on the world scientific stage as much as possible in the meantime. When Hitler began demanding that speeches open with “Heil Hitler,” Planck begrudgingly complied. As physicist Paul Ewald described of his address at the opening of the Kaiser Wilhelm Institute of Metals in the 1930s, “… we were all staring at Planck, waiting to see what he would do at the opening, because at that time it was prescribed officially that you had to open such addresses with ‘Heil Hitler.’ Well, Planck stood on the rostrum and lifted his hand half high, and let it sink again. He did it a second time. Then finally the hand came up and he said ‘Heil Hitler.’ … Looking back, it was the only thing you could do if you didn’t want to jeopardize the whole [Kaiser Wilhelm Society].” As science writer Philip Ball describes, for Planck, the rise of Hitler and Nazi Germany was a “catastrophe that had engulfed him, and which in the end destroyed him.”

14. HIS SON WAS LINKED TO A PLOT TO ASSASSINATE HITLER.

Erwin Planck was a high-ranking government official before the Nazis came to power, and although he resigned from political life in 1933, he secretly helped craft a constitution for a post-Nazi government. In 1944, he was arrested and accused of taking part in Claus Stauffenberg’s assassination attempt on Adolf Hitler, in which the Nazi leader was wounded by an exploding briefcase. While it seems that Erwin didn’t directly take part in the bombing plot, he did recruit supporters for the conspirators, and he was sentenced to death for treason. Trying to save his favorite son’s life, the 87-year-old Max Planck wrote personal letters begging for clemency to both Hitler and the head of the SS, Heinrich Himmler. Erwin was executed in 1945.

15. HIS MOTTO WAS “PERSEVERE AND CONTINUE WORKING.”

After World War I, Planck encouraged his fellow scientists to ignore the turbulence of politics to focus on the greater importance of their scientific achievements. “Persevere and continue working” was his slogan.

16. HE CALLED PHYSICS “THE MOST SUBLIME SCIENTIFIC PURSUIT IN LIFE.”

In his autobiography, Planck described why he chose to pursue physics. “The outside world is something independent from man, something absolute, and the quest for the laws which apply to this absolute appeared to me as the most sublime scientific pursuit in life,” he wrote.

17. THERE ARE MANY THINGS NAMED AFTER HIM.

Several discoveries by Planck were eventually named after him, including Planck’s law, Planck’s constant (h, or 6.62607004 × 10^-34 joule-seconds), and Planck units. There is the Planck era (the first stage of the Big Bang), the Planck particle (a tiny black hole), the lunar crater Planck, and the European Space Agency spacecraft Planck, among others. Not to mention the Max Planck Society and its 83 Max Planck Institutes.

nextArticle.image_alt|e
iStock
arrow
music
Stradivarius Violins Get Their Distinctive Sound By Mimicking the Human Voice
iStock
iStock

Italian violinist Francesco Geminiani once wrote that a violin's tone should "rival the most perfect human voice." Nearly three centuries later, scientists have confirmed that some of the world's oldest violins do in fact mimic aspects of the human singing voice, a finding which scientists believe proves "the characteristic brilliance of Stradivari violins."

Using speech analysis software, scientists in Taiwan compared the sound produced by 15 antique instruments with recordings of 16 male and female vocalists singing English vowel sounds, The Guardian reports. They discovered that violins made by Andrea Amati and Antonio Stradivari, the pioneers of the instrument, produce similar "formant features" as the singers. The resonance frequencies were similar between Amati violins and bass and baritone singers, while the higher-frequency tones produced by Stradivari instruments were comparable to tenors and contraltos.

Andrea Amati, born in 1505, was the first known violin maker. His design was improved over 100 years later by Antonio Stradivari, whose instruments now sell for several million dollars. "Some Stradivari violins clearly possess female singing qualities, which may contribute to their perceived sweetness and brilliance," Hwan-Ching Tai, an author of the study, told The Guardian.

Their findings were published in the journal Proceedings of the National Academy of Sciences of the United States of America. A 2013 study by Dr. Joseph Nagyvary, a professor emeritus at Texas A&M University, also pointed to a link between the sounds produced by 250-year-old violins and those of a female soprano singer.

According to Vox, a blind test revealed that professional violinists couldn't reliably tell the difference between old violins like "Strads" and modern ones, with most even expressing a preference for the newer instruments. However, the value of these antique instruments can be chalked up to their rarity and history, and many violinists still swear by their exceptional quality.

[h/t The Guardian]

nextArticle.image_alt|e
Phil Walter, Getty Images
arrow
science
How Michael Jackson's Dancing Defied the Laws of Biomechanics
Phil Walter, Getty Images
Phil Walter, Getty Images

From the time he debuted the moonwalk on broadcast television in 1983, Michael Jackson transcended the label of "dancer." His moves seemed to defy gravity as well as the normal limits of human flexibility and endurance.

Now we have some scientific evidence for that. Three neurosurgeons from the Postgraduate Institute of Medical Education and Research in Chandigarh, India, recently published a short paper in the Journal of Neurosurgery: Spine that examines just how remarkable one of Jackson's signature moves really was.

In the 1988 video for "Smooth Criminal" and subsequent live performances, Jackson is seen taking a break from his constant motion to stand in place and lean 45 degrees forward. Both he and his dancers keep their backs straight. Biomechanically, it's not really possible for a human to do. And even though he had a little help, the neurosurgeons found it to be a pretty impressive feat.

An illustration of Michael Jackson's 'Smooth Criminal' dance move.
Courtesy of 'Journal of Neurosurgery: Spine.' Copyright Manjul Tripathi, MCh.

Study co-author Manjul Tripathi told CNN that humans can't lean forward much more than 25 or 30 degrees before they risk landing on their faces. (He knows, because he tried it.) Normally, bending involves using the hip as a fulcrum, and erector spinae muscles to support our trunk. When Jackson leaned over, he transferred the fulcrum to the ankle, with the calf and Achilles tendon under strain. Since that part of the body is not equipped to support leaning that far forward without bending, the "Smooth Criminal" move was really a biomechanical illusion. The act was made possible by Jackson's patented shoe, which had a "catch" built under the heel that allowed him to grasp a protruding support on the stage. Secured to the floor, he was able to achieve a 45-degree lean without falling over.

But the neurosurgeons are quick to point out that the shoes are only part of the equation. To achieve the full 45-degree lean, Jackson would have had to have significant core strength as well as a strong Achilles tendon. An average person equipped with the shoe would be unable to do the move.

How does this apply to spinal biomechanics research? The authors point out that many dancers inspired by Jackson are continuing to push the limits of what's possible, leading to injury. In one 2010 paper, researchers surveyed 312 hip-hop dancers and found that 232 of them—almost 75 percent of the cohort—reported a total of 738 injuries over a six-month period. That prevalence could mean neurosurgeons are facing increasingly complex or unique spinal issues. The surgeons hope that awareness of potential risks could help mitigate problems down the road.

[h/t CNN]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios