9 Facts about Physicist Michael Faraday, the 'Father of Electricity'

Hulton Archive/Getty
Hulton Archive/Getty

A self-taught scientist, Michael Faraday (1791-1867) excelled in chemistry and physics to become one of the most influential thinkers in history. He’s been called the "father of electricity," (Nikola Tesla and Thomas Edison also wear that crown) and his appetite for experimenting knew no bounds. "Nothing is too wonderful to be true, if it be consistent with the laws of nature; and in such things as these, experiment is the best test of such consistency," he wrote. Faraday discovered laws of electromagnetism, invented the first electric motor, and built the first electric generator—paving the way for our mechanized age. Read on for more Faraday facts.


Born in south London in a working-class family, Faraday earned a rudimentary education in reading, writing, and math. When he turned 14 he was apprenticed to a London bookbinder for the following seven years. In his free time, Faraday read Jane Marcet's Conversations in Chemistry, an 1806 bestseller that explained scientific topics for a general audience.


Like Marcet, Faraday was fascinated by the work of Sir Humphry Davy, a charismatic chemist who had found fame by testing the effects of nitrous oxide on himself. (He let others, including poet Samuel Taylor Coleridge, inhale the gas on the condition that they keep diaries of their thoughts and sensations while high.) In spring 1812, a customer at the bookbindery gave Faraday tickets to see Davy’s upcoming lectures. Faraday compiled his notes from the lectures in a bound volume (the one benefit of his toil at the bookbinder's) and sent the book to Davy, requesting to become his assistant—an unheard-of notion for a tradesman with no university degree. Sensing his intelligence and drive, Davy secured him a job at the Royal Institution, where Davy ran the chemistry lab.


By 1820, other scientists had shown that an electric current produces a magnetic field, and that two electrified wires produce a force on each other. Faraday thought there could be a way to harness these forces in a mechanical apparatus. In 1822, he built a device using a magnet, liquid mercury (which conducts electricity) and a current-carrying wire that turned electrical energy into mechanical energy—in other words, the first electric motor. Faraday noted the success in his journal [PDF]: "Very satisfactory, but make more sensible apparatus."


A decade after his breakthrough with the motor, Faraday discovered that the movement of a wire through a stationary magnetic field can induce an electrical current in the wire—the principle of electromagnetic induction. To demonstrate it, Faraday built a machine in which a copper disc rotated between the two poles of a horseshoe magnet, producing its own power. The machine, later called the Faraday disc, became the first electric generator.


In a brilliantly simple experiment (recreated by countless schoolchildren today), Faraday laid a bar magnet on a table and covered it with a piece of stiff paper. Then he sprinkled magnetized iron shavings across the paper, which immediately arranged themselves into semicircular arcs emanating from the ends—the north and south poles—of the magnet. In addition to revealing that magnets still exert pull through barriers, he visualized the pattern of magnetic force in space.


Faraday served in a number of scientific roles at the Royal Institution, an organization dedicated to promoting applied science. Eventually Faraday was appointed as its Fullerian Professor of Chemistry, a permanent position that allowed him to research and experiment to his heart's content. His magnetic laboratory from the 1850s is now faithfully replicated in the Royal Institution's Faraday Museum. It displays many of his world-changing gadgets, including an original Faraday disc, one of his early electrostatic generators, his chemical samples, and a giant magnet.


Faraday's work was so groundbreaking that no descriptors existed for many of his discoveries. With his fellow scientist William Whewell, Faraday coined a number of futuristic-sounding names for the forces and concepts he identified, such as electrode, anode, cathode, and ion. (Whewell himself coined the word "scientist" in 1834, after "natural philosopher" had become too vague to describe people working in increasingly specialized fields.)


In 1848, the Prince Consort, also known as Queen Victoria's husband Prince Albert, gave Faraday and his family a comfortable home at Hampton Court—not the royal palace, but near it—free of charge, to recognize his contributions to science. The house at 37 Hampton Court Road was renamed Faraday House until he died there on August 25, 1867. Now it's known simply by its street address.


To honor Faraday's role in the advancement of British science, the Bank of England unveiled a £20 bill with his portrait on June 5, 1991. He joined an illustrious group of Britons with their own notes, including William Shakespeare, Florence Nightingale, and Isaac Newton. By the time it was withdrawn in February 2001, the bank estimated that about 120 million Faraday bills were in circulation (that's more than 2 billion quid).

Is There An International Standard Governing Scientific Naming Conventions?


Jelle Zijlstra:

There are lots of different systems of scientific names with different conventions or rules governing them: chemicals, genes, stars, archeological cultures, and so on. But the one I'm familiar with is the naming system for animals.

The modern naming system for animals derives from the works of the 18th-century Swedish naturalist Carl von Linné (Latinized to Carolus Linnaeus). Linnaeus introduced the system of binominal nomenclature, where animals have names composed of two parts, like Homo sapiens. Linnaeus wrote in Latin and most his names were of Latin origin, although a few were derived from Greek, like Rhinoceros for rhinos, or from other languages, like Sus babyrussa for the babirusa (from Malay).

Other people also started using Linnaeus's system, and a system of rules was developed and eventually codified into what is now called the International Code of Zoological Nomenclature (ICZN). In this case, therefore, there is indeed an international standard governing naming conventions. However, it does not put very strict requirements on the derivation of names: they are merely required to be in the Latin alphabet.

In practice a lot of well-known scientific names are derived from Greek. This is especially true for genus names: Tyrannosaurus, Macropus (kangaroos), Drosophila (fruit flies), Caenorhabditis (nematode worms), Peromyscus (deermice), and so on. Species names are more likely to be derived from Latin (e.g., T. rex, C. elegans, P. maniculatus, but Drosophila melanogaster is Greek again).

One interesting pattern I've noticed in mammals is that even when Linnaeus named the first genus in a group by a Latin name, usually most later names for related genera use Greek roots instead. For example, Linnaeus gave the name Mus to mice, and that is still the genus name for the house mouse, but most related genera use compounds of the Greek-derived root -mys (from μῦς), which also means "mouse." Similarly, bats for Linnaeus were Vespertilio, but there are many more compounds of the Greek root -nycteris (νυκτερίς); pigs are Sus, but compounds usually use Greek -choerus (χοῖρος) or -hys/-hyus (ὗς); weasels are Mustela but compounds usually use -gale or -galea (γαλέη); horses are Equus but compounds use -hippus (ἵππος).

This post originally appeared on Quora. Click here to view.

An Ice Age Wolf Head Was Found Perfectly Preserved in Siberian Permafrost


Don’t lose your head in Siberia, or it may be found preserved thousands of years later.

A group of mammoth tusk hunters in eastern Siberia recently found an Ice Age wolf’s head—minus its body—in the region’s permafrost. Almost perfectly preserved thanks to tens of thousands of years in ice, researchers dated the specimen to the Pleistocene Epoch—a period between 1.8 million and 11,700 years ago characterized by the Ice Age. The head measures just under 16 inches long, The Siberian Times reports, which is roughly the same size as a modern gray wolf’s.

Believed to be between 2 to 4 years old around the time of its death, the wolf was found with its fur, teeth, and soft tissue still intact. Scientists said the region’s permafrost, a layer of ground that remains permanently frozen, preserved the head like a steak in a freezer. Researchers have scanned the head with a CT scanner to reveal more of its anatomy for further study.

Tori Herridge, an evolutionary biologist at London’s Natural History Museum, witnessed the head’s discovery in August 2018. She performed carbon dating on the tissue and tweeted that it was about 32,000 years old.

The announcement of the discovery was made in early June to coincide with the opening of a new museum exhibit, "The Mammoth," at Tokyo’s Miraikan National Museum of Emerging Science and Innovation. The exhibit features more than 40 Pleistocene specimens—including a frozen horse and a mammoth's trunk—all in mint condition, thanks to the permafrost’s effects. (It's unclear if the wolf's head is included in the show.)

While it’s great to have a zoo’s worth of prehistoric beasts on display, scientists said the number of animals emerging from permafrost is increasing for all the wrong reasons. Albert Protopopov, director of the Academy of Sciences of the Republic of Sakha, told CNN that the warming climate is slowly but surely thawing the permafrost. The higher the temperature, the likelier that more prehistoric specimens will be found.

And with average temperatures rising around the world, we may find more long-extinct creatures rising from the ice.