CLOSE
Original image
NASA / SwRI / MSSS / Gerald Eichstädt / Seán Doran © PUBLIC DOMAIN

Here's the Closest View of Jupiter's Great Red Spot That Humans Have Ever Seen

Original image
NASA / SwRI / MSSS / Gerald Eichstädt / Seán Doran © PUBLIC DOMAIN

NASA's Juno spacecraft completed perijove 7 yesterday, flying nearest to Jupiter in its 53-day orbit and collecting intimate science a mere 5600 miles above the gas giant's cloud tops. This flyby took the spacecraft directly over Jupiter's Great Red Spot, a centuries-old, 10,000-mile-wide vermilion vortex that has long perplexed scientists. Among the storm's unknowns are its depth and perpetuating forces. The first raw images of the Earth-sized hurricane were released today.

"This is a storm that we've been tracking ever since the dawn of modern astronomy, and we're the first generation to get this exquisite level of detail," Leigh Fletcher, a planetary scientist at the University of Leicester, tells Mental Floss. He says that from the spacecraft's perspective, the Great Red Spot would have stretched from horizon to horizon.

Juno has thus far given us a startling new vision of Jupiter—one of teeming teals and swirling storms—and caused scientists to sharpen their pencils and rewrite much of what they knew about the solar system's largest planet. Today's initial image data promise no less a revolution in the scientific understanding of Jupiter.

What does the Great Red Spot look like from an expert's perspective? "I see a swirl of red cloud material as the vortex spirals anti-clockwise, a deep-red heart that coincides with the calm center of the powerful winds, and clusters of small-scale clouds that stand above the red depths," says Fletcher. "There's even evidence of waves in the spiral arms in these breathtaking images. It's an incredible level of detail in an image that's set to become instantly iconic."

sequential views of the great red spot of jupiter
Enhanced, filtered, and color-adjusted images of the Great Red Spot, in sequential order, showing the changing view from the spacecraft as it passed over the 10,000-mile-wide storm.
Ted Stryk © PUBLIC DOMAIN

Today's image release is just a taste of what is to come, of course. The spacecraft had all nine of its science instruments active during the pass, and data are being blasted back to the Deep Space Network at the speed of light. "For me, the real science always starts with spectroscopy," says Fletcher, "assessing the fingerprints of the gaseous composition and aerosols that are present within the storm." Juno's science payload allows scientists to peer hundreds of miles beneath Jupiter's clouds. "For years we've tried to understand how deep [the Great Red Spot] penetrates into the atmosphere, and what might be sustaining it. By probing below the clouds with the microwave instrument, we might just find the answers we've been looking for."

The Juno spacecraft launched on August 5, 2011 and achieved orbit around Jupiter on July 4, 2016. The next flyby of Jupiter will take place on September 1. It will mark the spacecraft's eighth orbit and seventh science flyby.

Want to see more amazing images? Head over to NASA's JunoCam.

Original image
AFP/Stringer/Getty Images
arrow
Space
SpaceX's Landing Blooper Reel Shows That Even Rocket Scientists Make Mistakes
Original image
SpaceX's Falcon 9 rocket launches.
AFP/Stringer/Getty Images

On March 30, 2017, SpaceX did something no space program had done before: They relaunched an orbital class rocket from Earth that had successfully achieved lift-off just a year earlier. It wasn't the first time Elon Musk's company broke new ground: In December 2015, it nailed the landing on a reusable rocket—the first time that had been done—and five months later landed a rocket on a droneship in the middle of the ocean, which was also unprecedented. These feats marked significant moments in the history of space travel, but they were just a few of the steps in the long, messy journey to achieve them. In SpaceX's new blooper reel, spotted by Ars Technica, you can see just some of the many failures the company has had along the way.

The video demonstrates that failure is an important part of the scientific process. Of course when the science you're working in deals with launching and landing rockets, failure can be a lot more dramatic than it is in a lab. SpaceX has filmed their rockets blowing up in the air, disintegrating in the ocean, and smashing against landing pads, often because of something small like a radar glitch or lack of propellant.

While explosions—or "rapid unscheduled disassemblies," as the video calls them—are never ideal, some are preferable to others. The Falcon 9 explosion that shook buildings for miles last year, for instance, ended up destroying the $200 million Facebook satellite onboard. But even costly hiccups such as that one are important to future successes. As Musk once said, "If things are not failing, you are not innovating enough."

You can watch the fiery compilation below.

[h/t Ars Technica]

Original image
NASA/Getty Images
arrow
Space
Here's Where You Can Watch a Livestream of Cassini's Final Moments
Original image
NASA/Getty Images

It's been a road trip like no other. After seven years and 2.2 billion miles, the NASA orbiter Cassini finally arrived at the Saturn system on June 30, 2004. Ever since, it's been capturing and transmitting valuable data about the distant environment. From sending the Huygens probe to land on the moon Titan to witnessing hurricanes on both of the planet's poles, Cassini has informed more than 3000 scientific papers.

It's been as impressive a mission as any spacecraft has ever undertaken. And tomorrow, Cassini will perform one last feat: sacrificing itself to Saturn's intense atmosphere. Project scientists are deliberately plunging it into the planet in order to secure just a little more data—and to keep the spacecraft, which is running low on fuel, from one day colliding with a Saturnian moon that might harbor life.

Because it won't have time to store anything on its hard drive, Cassini will livestream its blaze of glory via NASA. The information will be composed mostly of measurements, since pictures would take too long to send. Instead, we'll get data about Saturn's magnetic field and the composition of its dust and gas.

"As we fly through the atmosphere, we are able to literally scoop up some molecules, and from those we can figure out the ground truth in Saturn’s atmosphere," Scott Edgington, a Cassini project scientist, told New Scientist. "Just like almost everything else in this mission, I expect to be completely surprised."

The action will kick off at 7 a.m. EDT on Friday, September 15. Scientists expect to say goodbye to Cassini less than an hour later. 

While you wait for Cassini's grand finale, you can check out some essential facts we've rounded up from Saturn experts. And keep your eyes peeled for a full recap of Cassini’s historic journey: Mental Floss will be in the control room at the Jet Propulsion Laboratory in Pasadena, California, to offer a firsthand account of the craft's final moments in space. 

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios