CLOSE
iStock
iStock

9 Interesting Facts About the Ribs

iStock
iStock

The human body is an amazing thing. For each one of us, it's the most intimate object we know. And yet most of us don't know enough about it: its features, functions, quirks, and mysteries. Our series The Body explores human anatomy, part by part. Think of it as a mini digital encyclopedia with a dose of wow.

Ribs are not just an incredibly tasty order on the menu at the nearest steak house: These bony spindles in your torso attach to your sternum (breast bone) to protect your lungs, heart, spleen, and most of the liver and help with giving shape to your chest cavity, which assists in breathing. Ribs are protective on the one hand, but if badly broken, your ribs can turn lethal to you, piercing your organs. Mental Floss spoke to John Martinez, MD, an urgent care provider with Dignity Health Medical Foundation in California for these nine fascinating facts about the ribs.

1. YOUR RIBS MOVE LIKE A BUCKET HANDLE.

The ribs allow chest expansion for breathing, Martinez explains. "They function similarly to the bucket handle on a bucket and swing upwards as we take a breath, allowing the thoracic cavity to expand." This increase in the thoracic cavity makes it easier to take a breath.

2. YOU HAVE THREE TYPES OF RIBS.

The human skeleton has 12 pairs of ribs. Working from the top of the torso down, ribs 1 to 7 are considered "true ribs," as they connect directly from the spine to the sternum, Martinez says. Ribs 8 to 10 are called "false ribs" because they don't connect directly, but have cartilage that attaches them to the sternum. Ribs 11 and 12 are called "floating ribs" because they only connect to the spine in back. These, he says, "are much shorter."

3. THIS MYTH ABOUT WOMEN'S RIBS PERSISTS.

In an effort to prove the Bible story of Eve as wrought from Adam's rib "true," pastors and Sunday School teachers sometimes pass along a tale that women have more ribs than men. It's not true (and that story is sexist, anyway). Gender plays no part in the number of ribs you have: It's 12 ribs for everyone. However, women's ribs are about 10 percent smaller in volume on average than men's ribs.

4. IN RARE INSTANCES, HUMANS CAN HAVE A "GORILLA RIB."

In rare cases, which have nothing to do with gender, a human might turn up sporting extra lumbar ribs, for a total of 13 pairs of ribs, much like our distant cousins, the gorillas. Thus, it's colloquially known as a "gorilla rib."

5. RIBS ARE THE REASON NEANDERTHALS DIDN'T NEED BELTS.

Neanderthals had wider, thicker rib cages than we modern slim-waisted humans, which would have made them terrible models for skinny jeans. A 2016 study in American Journal of Physical Anthropology found that the Ice-Age diet is likely responsible for the larger ribcage and wider pelvis in Neanderthals. Essentially, carbs were scarce and fat was abundant. This led to an enlarged liver, kidneys and "their corresponding morphological manifestations," the authors write. In other words, they needed more space to house bigger organs.

6. TWO VERY DIFFERENT KINDS OF ATHLETE SHARE ONE COMMON INJURY. 

"Rowers and baseball pitchers are the most common athletes to suffer from stress fractures of the ribs," Martinez says. This is caused by the serratus anterior muscle pulling on the delicate ribs. "Other athletes that may be more likely to suffer from rib stress fractures include golfers, dancers, weightlifters and volleyball players," he adds.

7. YOU CAN SNEEZE YOUR WAY TO A RIB FRACTURE.

"True" rib fractures—where the bone breaks all the way through—are usually from traumatic events such as "a hard football tackle [or] car accident," Martinez says. However, sometimes a rib fracture can occur "from sneezing or coughing due to the force of the contracting chest wall muscles on the ribs." Treatment for true rib fractures is the same as rib stress fractures.

8. WAIST TRAINING USED TO BE ALL THE RAGE … AND STILL SOMETIMES IS.

Women have historically worn corsets, undergarments that cinch the torso in, particularly at the waist, bringing ribs and organs closer together for a smaller waist and more prominent bust. Despite corsets having gone out of fashion by the 1920s, when women began to prefer the looser, more flowing garments of the Flapper era, a number of contemporary women still wear them for reasons ranging from aesthetics to performance art, spawning a practice known as tight lacing or waist training. In this movement, women actively whittle their waists down to exceptionally small circumferences.

Doctors warn that there is risk of permanent damage to squished organs, as well as such uncomfortable syndromes as acid reflux syndrome and back pain. But it doesn't stop those who love the look.

9. THE GUINNESS RECORD HOLDER FOR A TINY WAIST IS 15 INCHES.

2011 Guinness Book of World Records winner Cathie Jung got her waist down to 15 inches through tight lacing by wearing corsets 24 hours a day, and moving down to smaller and smaller sizes. Her waist now has the same circumference as a regular jar of mayonnaise.

nextArticle.image_alt|e
iStock
arrow
The Body
11 Facts About Fingernails
iStock
iStock

Whether there's dirt beneath them or polish atop them, your fingernails serve more than just decorative purposes: They help keep your fingertips safe and have a multitude of special functions that even your doctor might not be aware of. “The nails occupy a unique space within dermatology and medicine in general, particularly because they are such a niche area about which few people have expertise,” Evan Rieder, assistant professor in the Ronald O. Perelman Department of Dermatology at NYU Langone Health, tells Mental Floss.

1. FINGERNAILS HAVE FOUR MAIN PARTS.

Along with skin and hair, nails are part of the body's integumentary system, whose main function is to protect your body from damage and infection. Fingernails have four basic structures: the matrix, the nail plate, the nail bed, and the skin around the nail (including the cuticle).

Fingernail cells grow continuously from a little pocket at the root of the nail bed called the matrix. The pale, crescent-shaped lunula—derived from Latin for "little moon"—on the nail itself is the visible portion of the matrix. If the lunula is injured, the  nail won't grow normally (a scarred lunula can result in a split nail), and changes in the lunula's appearance can also be signs of a systemic disease.

Fingernail cells are made of a protein called keratin (same as your hair). As the keratin cells push out of the matrix, they become hard, flat and compact, eventually forming the hard surface of the nail known as the nail plate. Beneath that is the nail bed, which almost never sees the light of day except when there's an injury or disease.

Surrounding the matrix is the cuticle, the semi-circle of skin that has a tendency to peel away from the nail. The skin just underneath the distal end of the fingernail is called the hyponychium, and if you've ever trimmed your nails too short, you know this skin can be slightly more sensitive than the rest of the fingertip.

2. THEY GROW AT A RATE OF 0.1 MILLIMETERS A DAY ...

That's about 3 to 4 millimeters per month. But they don't always grow at the same speed: Fingernails grow more quickly during the day and in summer (this may be related to exposure to sunlight, which produces more nail-nourishing vitamin D). Nails on your bigger fingers also grow faster, and men's grow faster than women's. The pinky fingernail grows the slowest of all the fingernails. According to the American Academy of Dermatology, if you lose a fingernail due to injury, it can take up to six months to grow back (while a toenail could take as much as a year and a half).

3. ... BUT NOT AFTER YOU'RE DEAD.

You've probably heard that your fingernails keep growing after death. The truth is, they don't, according to the medical journal BMJ. What's actually happening is that the skin around the base of the fingernails retracts because the body is no longer pumping fluids into the tissues, and that creates a kind of optical illusion that makes the nails appear longer.

4. ITS ESTIMATED THAT 20 TO 30 PERCENT OF PEOPLE BITE THEIR NAILS.

Scientists say it's still unclear why, but they suspect nail-biters do it because they're bored, frustrated, concentrating, or because it just feels comforting (and anxiety doesn't seem to play a big role). Perfectionists who don't like to be idle are very likely to have the habit. Biters expose themselves to the dangerous crud that collects underneath the nail: The hyponychium attracts bacteria, including E. coli, and ingesting that through nail-biting can lead to gastrointestinal problems down the line. Biting can also damage teeth and jaws.

5. HUMAN FINGERNAILS ARE BASICALLY FLAT CLAWS.

Our primate ancestors had claws—which, like nails, are made of keratin. As human ancestors began using tools some 2.5 million years ago (or even earlier), evolutionary researchers believe that curved claws became a nuisance. To clutch and strike stone tools, our fingertips may have broadened, causing the claws to evolve into fingernails.

6. THE NAIL ACTUALLY MAKES YOUR FINGERTIP MORE SENSITIVE.

While the fingernail may be tough enough to protect tender flesh, it also has the paradoxical effect of increasing the sensitivity of the finger. It acts as a counterforce when the fingertip touches an object. "The finger is a particularly sensitive area because of very high density of nerve fibers," Rieder says.

7. FINGERNAILS CAN REVEAL LUNG, HEART, AND LIVER DISEASES.

"One of the most interesting facts about fingernails is that they are often a marker for disease within the body," Rieder says. Nail clubbing—an overcurvature of the nail plate and thickening of the skin around the nails—is a particularly significant sign of underlying illness, such as lung or heart disease, liver disease, or inflammatory bowel disease. Two-toned nails—whitish from the cuticle to the nail's midpoint and pink, brown, or reddish in the distal half—can be a sign of kidney and liver disease. Nails that are two-thirds whitish to one-third normal can also be a sign of liver disease. However, little white marks on your nails, known as milk spots (or punctate leukonychia) are just the remnants of any kind of trauma to the nail, from slamming it in a door to chewing on it too fervently.

8. YOU CAN GET A COMMON SKIN DISEASE ON YOUR NAILS.

Psoriasis is "typically thought of as a skin disease, but is actually a skin, joint, and nail disease, and when severe, a marker of cardiovascular risk," Rieder says. Psoriatic fingernails may have orange patches called oil spots, red lines known as splinter hemorrhages, lifting of the edges of the nails, and pits, "which look like a thumb tack was repeatedly and haphazardly pushed into the nails," he says.

Doctors often prescribe topical or injected corticosteroids to treat psoriatic nails, but using lasers is an emerging and potentially more cost-effective technique. Rieder relies on a pulsed dye laser, which uses an organic dye mixed with a solvent as the medium to treat nail psoriasis, "which can be both medically and aesthetically bothersome," he says. This laser is able to penetrate through the hard nail plate with minimal discomfort and "to treat targets of interest, in the case of psoriasis, blood vessels, and hyperactive skin," Rieder says.

9. ANCIENT CULTURES DISPLAYED SOCIAL STATUS WITH NAIL ART.

Painting and other forms of decorating nails have a history of offering social and aesthetic cues through variations in nail color, shape, and length, Rieder says. In fact, he adds, in some cultures ornate and well-decorated fingernails "serve as a proxy for social status."

Five thousand years ago in China, men and women of the Ming Dynasty aristocracy grew their nails long and covered them with golden nail guards or bright home-made polishes. The long nails allegedly announced to the world their social rank and their freedom from performing menial labor.

10. A FORMER BEAUTICIAN HELD THE WORLD RECORD FOR THE LONGEST NAILS.

Lee Redmond of Utah started growing her nails in 1979 and kept at it until she held the world record for "longest fingernails on a pair of hands ever (female)" in 2008. Her right thumbnail was 2 feet, 11 inches and the collective length of all her nails was 28 feet, 4 inches. She also applied nail hardener daily and painted them a reflective gold. Unfortunately, she broke her nails in a 2009 car accident and has no plans to regrow them.

11. THE FIRST NAIL CLIPPERS WERE PATENTED IN 1875.

Today, biters don't have to use their teeth to trim their nails. While the earliest tools for cutting nails were most likely sharp rocks, sand, and knives, the purpose-built nail clipper—though it might be more accurately called a circular nail file—was designed by a Boston, Massachusetts inventor named Valentine Fogerty and patented in 1875. The nail clippers we know today were the design of inventors Eugene Heim and Oelestin Matz, who were granted their patent for a clamp-style fingernail clipper in 1881.

nextArticle.image_alt|e
Photo illustration by Mental Floss. Images: iStock.
arrow
science
What's Really Happening When We See 'Stars' After Rubbing Our Eyes?
Photo illustration by Mental Floss. Images: iStock.
Photo illustration by Mental Floss. Images: iStock.

It's likely happened to you before: You start rubbing your eyes and almost immediately begin seeing colors, specks, and swirls from behind your closed lids. So what's happening when you see these 2001-esque "stars"? Do they only occur upon rubbing? Does everyone experience them?

Before we can get to what causes the lights, we need to understand a bit about how the eyes work. Angie Wen, a cornea surgeon at New York Eye and Ear Infirmary of Mount Sinai, tells Mental Floss that the retina—the innermost layer of the eye—consists of millions of cells, or photoreceptors. These cells, she says, "are responsible for receiving information from the outside world and converting them to electrical impulses that are transmitted to the brain by the optic nerve. Then, the brain interprets them as images representing the world around us."

However, what we see doesn't just stop there. Sometimes "we see light that actually comes from inside our eyes or from electric stimulation of the brain rather than from the outside world," Wen says. "These bursts of seemingly random intense and colorful lights are called phosphenes, and appear due to electrical discharges from the cells inside our eyes that are a normal part of cellular function."

People have been writing and theorizing about phosphenes for thousands of years. Greek philosophers thought the bursts of light were the result of fire inside our heads: "The eye obviously has fire within it, for when the eye is struck fire flashes out," wrote Alcmaeon of Croton (6th–5th century BCE), a philosopher and early neuroscientist, of the swirls and specks someone sees after getting a blow to the head. A century later, Plato—who believed that a "visual current" [PDF] streamed out of the eye—wrote that "Such fire as has the property, not of burning, but of yielding a gentle light they [the Gods] contrived should become the proper body of each day."

Plato's take was still the dominant one through the Middle Ages. Eventually, Newton (1642–1727) theorized a concept that's more in line with what's believed today about these strange sparkly visions: The phenomenon is due to light that's produced and observed when pressure and motion is placed on the eyes.

Eleonora Lad, an associate professor of ophthalmology at Duke University Medical Center who has a background in neuroscience, explains exactly why eye rubbing generates these visions: "Most vision researchers believe that phosphenes result from the normal activity of the visual system after stimulation of one of its parts from some stimulus other than light," including putting external pressure on the eyes. (Interestingly, due to retinal damage, blind people can't see phosphenes caused by pressure, but they can see them when their visual cortex is electrically stimulated. In hopes of turning this phenomenon into improved vision for the blind, scientists have developed a cortical visual prosthesis, implanted in the visual cortex, that generates patterns of phosphenes. The device has been approved by the FDA for clinical trial.)

As Alcmaeon rightly pointed out, there are causes for the bursts of light beyond just rubbing your eyes: Getting hit in the eye can produce this phenomenon—as can a sneeze, a surprisingly powerful event that tends to clamp our eyes shut, Wen says.

Receiving an MRI or EEG may also trigger it. MRIs, for example, produce a changing magnetic field which can stimulate the visual cortex, making a person see these flashing lights. When it comes to an EEG, depending on the brain stimulation frequency band (Hz) used, some patients experience the phenomenon when closing their eyes, which is believed to come from retinal stimulation during the process.

And the activity doesn't only happen on Earth; astronauts in space have also been known to experience them. As reported in 2006 in the journal Vision Research, "over 80 percent of astronauts serving in today's NASA or ESA (European Space Agency) programs have perceived phosphenes at least in some missions and often over several orbits." They're mainly attributed to interactions between the eye and cosmic ray particles in space, outside the Earth's protective magnetic field.

No matter the cause, the bursts of light are perfectly normal—but that doesn't mean you should engage in excessive eye rubbing. Wen says ophthalmologists advise against rubbing your eyes or applying vigorous pressure; according to Lad, too much rubbing may be damaging to the cornea and lens or "result in a loss of fatty tissue around the eyes, causing the eyes to look deep-set."

SECTIONS

arrow
LIVE SMARTER