7 Surprising Facts About Pluto

NASA/JHUAPL/SwRI
NASA/JHUAPL/SwRI

Pluto, the ninth planet of the classical solar system was, until 2015, largely a mystery—a few pixels 3.6 billion miles from the Sun. When NASA's New Horizons spacecraft arrived at the diminutive object in the far-off Kuiper Belt, planetary scientists discovered a geologist's Disneyland—a mind-blowing world of steep mountains, smooth young surfaces, ice dunes, and a stunning blue atmosphere. To learn more, Mental Floss spoke to Kirby Runyon, a planetary geomorphologist at the Johns Hopkins University Applied Physics Laboratory and a scientist on the NASA New Horizons geology team. Here is what you need to know about Pluto, the small world with the biggest heart in the solar system.

1. 248 EARTH YEARS = 1 PLUTO YEAR

At 1473 miles in diameter—about half the width of the United States—Pluto is the smallest of the nine classical planets and the largest discovered "trans-Neptunian object" (i.e., an object beyond the planet Neptune). As could be expected, it is cold on Pluto's surface: around -375°F. Its gravity is about 1/15 that of Earth. It has five moons: Charon, Nix, Hydra, Kerberos, and Styx. Charon is the largest of the moons by far, with a diameter about half that of Pluto. It takes about 248 Earth years for Pluto to circle the Sun, and during that time, its highly elliptical orbit takes it as far as 49 astronomical units from our star, and as close as 30.

2. THE DISNEY DOG IS CONNECTED TO THE PLANET.

Pluto the planet was discovered on February 18, 1930 by astronomer Clyde Tombaugh at the Lowell Observatory in Flagstaff, Arizona. It was named later that year by Venetia Burney, an 11-year-old girl in England. She first learned of the new, nameless planet from her grandfather, who mentioned it while reading the newspaper. Burney was interested in Greek and Roman mythology at the time, and she immediately suggested Pluto.

Her grandfather was impressed, and mentioned it in a note to a friend of his, who taught astronomy at Oxford. The astronomy professor passed word to Lowell Observatory, and the astronomers there took an immediate liking to it. It helped that the first two letters of Pluto are the initials of the observatory's (then dead) founder, Percival Lowell. Note that Burney did not get the name from the Disney dog. Just the opposite: The dog, which premiered the same year as Pluto was discovered, was likely named by Walt to ride the planet's publicity wave. Scientists and cartoonists alike have yet to explain how the then-unseen planet and dog ended up being more or less the same color.

3. A PLUTO SYSTEM SPACE ELEVATOR IS TECHNICALLY POSSIBLE.

Space elevators are a science fiction staple, and advances in carbon nanotubes have made their prospects, if not likely, then certainly possible. The idea is to bring a large object such as an asteroid into a geostationary orbit at Earth's equator, and essentially connect that object and the Earth with a cable or structure. You could then lift things into orbit without the need for rockets. According to Runyon, the unique orbital characteristics of Pluto and Charon create interesting opportunities for the very, very distant future of engineering.

The two worlds are tidally locked. Charon's orbit is precisely the same duration as Pluto's rotation, meaning that if you stood on Pluto's surface, the moon would hover over the same spot, never rising or setting. "Because they are binary, tidally locked, literally orbiting each other in a perfect circle, you could build a space elevator that goes from one planet to the other, from Pluto to Charon," Runyon tells Mental Floss. "And it would touch the ground in both places, physically linking them. And you could literally climb a ladder from one to the other."

4. ITS HEART IS IN THE RIGHT PLACE—THE 40 PERCENT OF THE PLANET WE'VE SEEN.

In 2015, the New Horizons spacecraft arrived at the Pluto system and turned a few pixels into a real world. The famous first image released by NASA is not a straight-on shot from Pluto's side, with the top being the North Pole and bottom being the south. It is in reality a view from Pluto's higher latitudes, looking down. (The heart, in other words, is quite higher up on the planet than the picture suggests.) Because New Horizons was a flyby craft and not an orbiter, planetary scientists don't know what 40 percent of the planet looks like.

5. ITS BIZARRE ORBIT AND ROTATION ARE A MYSTERY.

The traditional classroom solar system model of a light bulb as the Sun and planets on wires extending from it represents a nice flat orbital plane known as the ecliptic, and for most of the solar system, that's pretty close to the truth. But not for Pluto, which has a 17-degree inclination relative to the ecliptic. Moreover, like Uranus, its rotation is tipped on its side, and it rotates backward (east to west). No one knows why, according to Runyon. "It's probably the result of an ancient impact," he says. "One not strong enough to disrupt planet but enough to tip on its side. This might have been the Charon-forming impact, which would be similar to how our moon is formed."

6. WE WERE WRONG ABOUT ITS ATMOSPHERE …

Astronomers have long known that Pluto has an atmosphere. During stellar occultations (that is, when it moves in front of stars), astronomers can see the star dim, and then completely go out, and then reappear dimly, and then return to its full brightness. That dimming is caused by the planet's atmosphere. Astronomers are furthermore able to track its density over time. Because Pluto is so far from the Sun, the ice on its surface sublimates: It goes from a solid directly to a gas without first becoming a liquid. When Pluto reached perihelion (as close to the Sun as its gets in an orbit) in 1989, the expectation was that the atmosphere would begin to collapse entirely: that it would freeze out, basically, and fall to the surface.

"A good comparison is when it snows on Earth," says Runyon. "Snow is basically the water vapor in the atmosphere freezing out and falling to the surface, leaving Earth's atmospheric density slightly lower than it would be otherwise." In Pluto's case, the thought was that the complete atmosphere would freeze out and fall onto the planet's surface.

It didn't happen. "Pluto's atmosphere is denser than we thought it would be," Runyon explains. "Even now as it's moving farther from the Sun, its atmosphere is puffier than ever." One model says that while the atmosphere does thin as ices fall to the surface, it never completely freezes and falls.

7. … WHICH IS ELECTRIC BLUE.

Scientists on the New Horizons team didn't expect to see Pluto's atmosphere during the flyby. "When we spun New Horizons around after closest approach and looked back at Pluto—being basically backlit from the Sun—we could see the atmosphere," he says. "We knew we'd be able to detect it, but to see it, and to see that the sunrise and sunset on Pluto is this ethereal electric blue—nobody anticipated that." Runyon says that the New Horizons found discrete atmospheric layers that could be traced for hundreds of miles. "Pluto has what's called a stably stratified atmosphere. The coldest layer is on the bottom and it gets warmer as you go up," he says.

"In science, you test hypotheses, but before you can even do that you need to figure out what's there in the first place. To me, that's the most exciting part of science. The most exciting part of space exploration is to see something for the first time, and that's what New Horizons was. And to turn around and look back at the Sun and see a beautiful atmosphere with the gorgeous layers through it is just astonishing," he says. 

The Leonid Meteor Shower Peaks This Weekend—Here's the Best Way to See It

NASA/Getty Images
NASA/Getty Images

The Leonid meteor shower will be making its annual appearance in the sky this weekend. As NPR reports, the best time to catch it will be late Saturday night into Sunday morning (November 17-18)—so if you really want to catch this dazzling light show, you may want to drink some coffee to help you stay up.

The waxing gibbous Moon will dull the meteors’ shine a little, so plan to start stargazing after the Moon has set but before dawn on Sunday. (You can use timeanddate.com to figure out the moonset time in your area. The site also features an interactive meteor shower sky map to track visibility conditions.)

If you'll be in parts of the South or Midwest this weekend, you're in luck. Florida, Alabama, Mississippi, Nebraska, and Nevada are expected to enjoy the best view of the Leonids this time around, according to Popular Mechanics.

The Leonids occur every year around November 17 or 18, when Earth drifts across the long trail of debris left behind by the comet Tempel-Tuttle. The comet takes 33 years to complete its orbit around the Sun, and when it reaches perihelion (its closest approach to the Sun), a Leonid storm may occur depending on the density of the comet's existing debris. This sometimes results in hundreds of thousand of meteors streaking across the sky per hour, viewable from Earth. The last Leonid storm occurred in 2001, but Earth may not see dense debris clouds until 2099, according to the American Meteor Society.

This year, if skies are clear and you can secure a secluded spot away from city lights, you might be able to see around 15 to 20 meteors per hour. They travel at 44 miles per second “and are considered to be some of the fastest meteors out there,” NASA says. They’re also known for their “fireballs”—explosions of light and color—which tend to last longer than a typical meteor streak.

[h/t NPR]

Two Harvard Scientists Suggest 'Oumuamua Could Be, Uh, an Alien Probe

ESO/M. Kornmesser
ESO/M. Kornmesser

An odd, cigar-shaped object has been stumping scientists ever since it zoomed into our solar system last year. Dubbed 'Oumuamua (pronounced oh-MOO-ah-MOO-ah), it was first seen through the Pan-STARRS 1 telescope in Hawaii in October 2017. 'Oumuamua moved at an unusually high speed and in a different kind of orbit than those of comets or asteroids, leading scientists to conclude that it didn't originate in our solar system. It was the first interstellar object to arrive from somewhere else, but its visit was brief. After being spotted over Chile and other locales, 'Oumuamua left last January, leaving lots of questions in its wake.

Now, two researchers at Harvard University bury a surprising suggestion in a new paper that analyzes the object's movement: 'Oumuamua could be an alien probe. Sure, why not?

First, astrophysicists Shmuel Bialy and Abraham Loeb argue that 'Oumuamua is being driven through space by solar radiation pressure, which could explain its uncharacteristic speed. But for that theory to work, they calculate that the object must be unusually thin. Bialy and Loeb then analyze how such a slender object might withstand collisions with dust and gases, and the force of rotation, on its interstellar journey.

Then things get weird.

"A more exotic scenario is that 'Oumuamua may be a fully operational probe sent intentionally to Earth vicinity by an alien civilization," they write [PDF]. They suggest that ‘Oumuamua could be be a lightsail—an artificial object propelled by radiation pressure—which also happens to be the technology that the Breakthrough Starshot initiative, of which Loeb is the advisory committee chair, is trying to send into space. "Considering an artificial origin, one possibility is that 'Oumuamua is a lightsail, floating in interstellar space as a debris from an advanced technological equipment,” they write.

Their paper, which was not peer-reviewed, was posted on the pre-print platform arXiv.

Loeb is well known for theorizing about alien tech. He previously suggested that intense radio signals from 2007 could be the work of aliens who travel through space on solar sails. However, Loeb acknowledged that this theory deals more with possibility than probability, The Washington Post noted. “It’s worth putting ideas out there and letting the data be the judge,” Loeb told the paper last year.

[h/t CNN]

SECTIONS

arrow
LIVE SMARTER