8 Useful Facts About Uranus

Uranus as seen by the human eye (left) and with colored filters (right).
Uranus as seen by the human eye (left) and with colored filters (right).
NASA/JPL

The first planet to be discovered by telescope, Uranus is the nearest of the two "ice giants" in the solar system. Because we've not visited in over 30 years, much of the planet and its inner workings remain unknown. What scientists do know, however, suggests a mind-blowing world of diamond rain and mysterious moons. Here is what you need to know about Uranus.

1. ITS MOONS ARE NAMED AFTER CHARACTERS FROM LITERATURE.

Uranus is the seventh planet from the Sun, the fourth largest by size, and ranks seventh by density. (Saturn wins as least-dense.) It has 27 known moons, each named for characters from the works of William Shakespeare and Alexander Pope. It is about 1784 million miles from the Sun (we're 93 million miles away from the Sun, or 1 astronomical unit), and is four times wider than Earth. Planning a trip? Bring a jacket, as the effective temperature of its upper atmosphere is -357°F. One Uranian year last 84 Earth years, which seems pretty long, until you consider one Uranian day, which lasts 42 Earth years. Why?

2. IT ROTATES UNIQUELY.

Most planets, as they orbit the Sun, rotate upright, spinning like tops—some faster, some slower, but top-spinning all the same. Not Uranus! As it circles the Sun, its motion is more like a ball rolling along its orbit. This means that for each hemisphere of the planet to go from day to night, you need to complete half an orbit: 42 Earth years. (Note that this is not the length of a complete rotation, which takes about 17.25 hours.) While nobody knows for sure what caused this 98-degree tilt, the prevailing hypothesis involves a major planetary collision early in its history. And unlike Earth (but like Venus!), it rotates east to west.

3. SO ABOUT THAT NAME …

You might have noticed that every non-Earth planet in the solar system is named for a Roman deity. (Earth didn't make the cut because when it was named, nobody knew it was a planet. It was just … everything.) There is an exception to the Roman-god rule: Uranus. Moving outward from Earth, Mars is (sometimes) the son of Jupiter, and Jupiter is the son of Saturn. So who is Saturn's father? Good question! In Greek mythology, it is Ouranos, who has no precise equivalent in Roman mythology (Caelus is close), though his name was on occasion Latinized by poets as—you guessed it!—Uranus. So to keep things nice and tidy, Uranus it was when finally naming this newly discovered world. Little did astronomers realize how greatly they would disrupt science classrooms evermore.

Incidentally, it is not pronounced "your anus," but rather, "urine us" … which is hardly an improvement.

4. IT IS ONE OF ONLY TWO ICE GIANTS.

Uranus and Neptune comprise the solar system's ice giants. (Other classes of planets include the terrestrial planets, the gas giants, and the dwarf planets.) Ice giants are not giant chunks of ice in space. Rather, the name refers to their formation in the interstellar medium. Hydrogen and helium, which only exist as gases in interstellar space, formed planets like Jupiter and Saturn. Silicates and irons, meanwhile, formed places like Earth. In the interstellar medium, molecules like water, methane, and ammonia comprise an in-between state, able to exist as gases or ices depending on the local conditions. When those molecules were found by Voyager to have an extensive presence in Uranus and Neptune, scientists called them "ice giants."

5. IT'S A HOT MYSTERY.

Planets form hot. A small planet can cool off and radiate away heat over the age of the solar system. A large planet cannot. It hasn't cooled enough entirely on the inside after formation, and thus radiates heat. Jupiter, Saturn, and Neptune all give off significantly more heat than they receive from the Sun. Puzzlingly, Uranus is different.

"Uranus is the only giant planet that is not giving off significantly more heat than it is receiving from the Sun, and we don't know why that is," says Mark Hofstadter, a planetary scientist at NASA's Jet Propulsion Laboratory. He tells Mental Floss that Uranus and Neptune are thought to be similar in terms of where and how they formed.

So why is Uranus the only planet not giving off heat? "The big question is whether that heat is trapped on the inside, and so the interior is much hotter than we expect, right now," Hofstadter says. "Or did something happen in its history that let all the internal heat get released much more quickly than expected?"

The planet's extreme tilt might be related. If it were caused by an impact event, it is possible that the collision overturned the innards of the planet and helped it cool more rapidly. "The bottom line," says Hofstadter, "is that we don't know."

6. IT RAINS DIAMONDS BIGGER THAN GRIZZLY BEARS.

Although it's really cold in the Uranian upper atmosphere, it gets really hot, really fast as you reach deeper. Couple that with the tremendous pressure in the Uranian interior, and you get the conditions for literal diamond rain. And not just little rain diamondlets, either, but diamonds that are millions of carats each—bigger than your average grizzly bear. Note also that this heat means the ice giants contain relatively little ice. Surrounding a rocky core is what is thought to be a massive ocean—though one unlike you might find on Earth. Down there, the heat and pressure keep the ocean in an "in between" state that is highly reactive and ionic.

7. IT HAS A BAKER'S DOZEN OF BABY RINGS.

Unlike Saturn's preening hoops, the 13 rings of Uranus are dark and foreboding, likely comprised of ice and radiation-processed organic material. The rings are made more of chunks than of dust, and are probably very young indeed: something on the order of 600 million years old. (For comparison, the oldest known dinosaurs roamed the Earth 240 million years ago.)

8. WE'VE BEEN THERE BEFORE AND WILL BE BACK.

The only spacecraft to ever visit Uranus was NASA's Voyager 2 in 1986, which discovered 10 new moons and two new rings during its single pass from 50,000 miles up. Because of the sheer weirdness and wonder of the planet, scientists have been itching to return ever since. Some questions can only be answered with a new spacecraft mission. Key among them: What is the composition of the planet? What are the interactions of the solar wind with the magnetic field? (That's important for understanding various processes such as the heating of the upper atmosphere and the planet's energy deposition.) What are the geological details of its satellites, and the structure of the rings?

The Voyager spacecraft gave scientists a peek at the two ice giants, and now it's time to study them up close and in depth. Hofstadter compares the need for an ice-giants mission to what happened after the Voyagers visited Jupiter and Saturn. NASA launched Galileo to Jupiter in 1989 and Cassini to Saturn in 1997. (Cassini was recently sent on a suicide mission into Saturn.) Those missions arrived at their respective systems and proved transformative to the field of planetary science.

"Just as we had to get a closer look at Europa and Enceladus to realize that there are potentially habitable oceans there, the Uranus and Neptune systems can have similar things," says Hofstadter. "We'd like to go there and see them up close. We need to go into the system." 

A Snow Moon—the Year’s Brightest Supermoon—Will Be Visible Next Week

iStock.com/jamesvancouver
iStock.com/jamesvancouver

Save the date: The next supermoon is set to light up skies on Tuesday, February 19. Because of when it's arriving, the event will also be a snow moon—a type of full moon that can only been seen this time of year, USA Today reports.

What is a supermoon?

A supermoon occurs when the moon is at its largest in the night sky. That means the Moon is not only full, but also at the point in its orbit that brings it closest to Earth—a position called perigee. On Tuesday, the Moon will appear 14 percent larger and 30 percent brighter than when it's farthest from our planet, making it the brightest supermoon of 2019.

This next supermoon will also have a fun nickname that fits the season. The full moon of each month has a special name. A harvest moon, the first full moon of September, is the best-known moniker, but there are also strawberry moons (June), sturgeon moons (August), and so on. A snow moon is the name for the full moon in February, alluding to February being the snowiest month of the year in the U.S.

When to watch the next supermoon

If the weather is clear in your area, the best time to see the super snow moon is early Tuesday morning on February 19, when the moon reaches its perigee. The Moon will become officially full six hours later at 10:53 a.m. EST. Sunday, Monday, and Tuesday nights will also offer spectacular views of a seemingly huge, nearly full moon.

Supermoons usually happen just a few times a year, but skygazers won't have to wait long for the next one: There's a super worm moon coming March 21, 2019.

[h/t USA Today]

11 Photos From the Opportunity Rover's Mission on Mars

NASA
NASA

In 2004, the rover Opportunity landed on Mars. Originally intended to serve a mere 90-day mission, the rover instead beamed back scientific discoveries for 15 years. But since a massive dust storm in 2018, the rover Opportunity ceased sending data—and now, NASA has declared its groundbreaking mission complete. (Its twin rover, Spirit, ended its mission in 2011.) Opportunity is the longest-serving robot ever sent to another planet. Let's celebrate Opportunity's Mars mission with a look at the images it captured.

1. Opportunity rover gets its first 360° shot.

Rover Opportunity's 360° photo of Mars
NASA/JPL/Cornell 

This 360° panorama, comprised of 225 frames, shows Mars as it was seen by the Opportunity rover on February 2, 2004. You can see marks made by the rover's airbags, made as Opportunity rolled to a stop. Here's a larger version of the photo.

2. Opportunity rover finds a meteorite.

Opportunity rover's photo of a meteorite on Mars
NASA/JPL/Cornell

This meteorite, found by Opportunity on January 19, 2005, was the first meteorite ever identified on another planet. The rover's spectrometers revealed that the basketball-sized meteorite was composed mostly of iron and nickel.

3. Opportunity rover shoots the Erebus Crater and drifts.

Opportunity rover's photo of Erebus craters and drift
NASA/JPL-Caltech/Cornell

On October 5, 2005—four months after Opportunity got stuck in an area NASA nicknamed "Purgatory Dune"—the rover skirted wind-deposited drifts in the center of the Erebus Crater, heading west along the outcrop (the light-toned rock) on the crater's rim, and snapped this photo with its PanCam.

4. Opportunity rover captures Martian rock layers.

Opportunity rover's photo of layers on Mars
NASA/JPL/Cornell

Located on the western ledge of the Erebus Crater, this ledge—called "Payson"—has a diverse range of primary and secondary sedimentary layers formed billions of years ago. According to NASA, "these structures likely result from an interplay between windblown and water-involved processes." Opportunity snapped this photo on April 5, 2006.

5. Opportunity rover comes to Cape Verde.

Opportunity rover's photo of Cape Verde
NASA/JPL-Caltech/Cornell

On October 20, 2007, Opportunity celebrated its second Martian birthday (one Martian year = 687 Earth days) by snapping this photo of Cape Verde, a promontory that juts out of the wall of the Victoria Crater. Scattered light from dust on the front sapphire window of the rover's camera created the soft quality of the image and the haze in the right corner.

6. and 7. Opportunity rover is hard at work on Marquette Island.

Opportunity rover's photo of Marquette Island
NASA/JPL-Caltech

This photo shows Opportunity approaching a rock called "Marquette Island" on November 5, 2009. Because its dark color made it stick out, the rover team referred to the rock—which investigations suggested was a stony meterorite—as "Sore Thumb." But it was eventually renamed, according to NASA, using "an informal naming convention of choosing island names for the isolated rocks that the rover is finding as it crosses a relatively barren plain on its long trek from Victoria Crater toward Endeavour Crater."

On November 19, 2009, the rover used its rock abrasion tool to analyze a 2-inch diameter area of Marquette, which scientists called "Peck Bay."

8. Opportunity rover encounters SkyLab Crater.

Opportunity rover's photo of SkyLab Crater
NASA/JPL-Caltech

Opportunity snapped a photo of this small crater, informally called Skylab, on May 12, 2011. Scientists estimate that the 30-foot crater was formed within the past 100,000 years. Click the photo for a larger version. You can also see the crater in stereo if you have a pair of anaglyph glasses!

9. Opportunity rover sees its shadow.

Opportunity rover's selfie
NASA/JPL-Caltech

On its 3051st day on Mars (August 23, 2012), Opportunity snapped this photo of its own shadow stretching into the Endeavour Crater.

10. Opportunity rover sees its first dust devil.

Opportunity rover's photo of a dust devil
NASA/JPL-Caltech/Cornell University/Texas A&M

Though its twin rover, Spirit, had seen many dust devils by this point, Opportunity caught sight of one for the first time on July 15, 2010.

11. Opportunity rover snaps a selfie.

Opportunity rover's self-portrait
NASA/JPL-Caltech/Cornell University/Arizona State University

A girl sure can get dusty traversing the Martian plains! Opportunity snapped the images that comprise this self-portrait with its panoramic camera between January 3 and January 6, 2014, a few days after winds blew off some of the dust on its solar panels. The shadow belongs to the mast—which is not in the photo—that the PanCam is mounted on.

SECTIONS

arrow
LIVE SMARTER