CLOSE
Mars' dust storms can be global. In these images taken a month apart in 2001, the dust storm near the southern polar ice cap (left) soon enveloped the entire planet (right).
Mars' dust storms can be global. In these images taken a month apart in 2001, the dust storm near the southern polar ice cap (left) soon enveloped the entire planet (right).
NASA/JPL-CALTECH/MSSS

6 Riveting Facts About Mars

Mars' dust storms can be global. In these images taken a month apart in 2001, the dust storm near the southern polar ice cap (left) soon enveloped the entire planet (right).
Mars' dust storms can be global. In these images taken a month apart in 2001, the dust storm near the southern polar ice cap (left) soon enveloped the entire planet (right).
NASA/JPL-CALTECH/MSSS

Few celestial objects have fascinated humankind throughout history more than the Red Planet.

The light of Venus may be brighter in the night sky, but Venus is shrouded in clouds and thus a mystery. Mars hides nothing (except when there are global dust storms, as you can see in the before-and-after image above). Its giant "seas" and landmasses, ice caps, and Martian-made "canals"—for over a century, we've longed to know more about Mars and the beings that we speculated lived there. When NASA dispelled the notion of creatures scurrying along the rusty plains, it raised a more tantalizing prospect: that we might one day be the creatures that call Mars home.

Mental Floss spoke to Kirby Runyon, a researcher at the Johns Hopkins University Applied Physics Laboratory, and Tanya Harrison, the director of research for Arizona State University's NewSpace Initiative, to learn more about the place your kids might live one day.

1. MARS BY THE NUMBERS.

A Martian year lasts just under two Earth years, taking 687 Earth days for the Red planet make its way around the Sun. A Mars day— called a sol—lasts 24.6 hours, which would be a nuisance for the circadian rhythms of astronauts (but not as bad as a day on Venus, which lasts 5832 hours). Mars looks desert hot—New Mexico with hazy skies, red because of its iron oxide soil—but is actually very cold, with a blistering hot sol being 70°F, and a cold sol a brisk -225°F.

Compared to Earth, Mars is a tiny Styrofoam ball, with a diameter just over half of ours and one-tenth of our mass. Its gravity will be an absolute nightmare for future colonists, at .38 that of their native planet. And you won't want to get a breath of fresh air on Mars unless you are trying to suffocate. Its atmosphere is 95.32 percent carbon dioxide, with a little nitrogen and argon thrown in. When you do try to take that single, hopeless breath, the tears on your eyeballs, saliva in your mouth, and water in your lungs will immediately evaporate. You won't die right away, but you'll probably want to.

2. IT HAS TWO MOONS, BOTH WITH BETTER NAMES THAN OURS.

Mars has two moons: Phobos and Deimos, which translate to Fear and Dread, respectively, making them the droogs to Mars's Alex. They're shaped like potatoes and don't exactly fill the evening sky. Standing on the Martian surface, Phobos would be about one-third the size of Earth's moon; Deimos would look like a bright star. Future human Martians will have to enjoy Phobos while they can. The tidal forces of Mars are tearing Phobos apart; in 50 million years, the big potato will disintegrate.

In the meantime, Phobos is one of the stepping stones NASA plans to take on its journey to Mars. No part of human exploration of the Red Planet is easy, and before we land on Mars (and then have to figure out how to launch back into space and somehow get back to Earth), it's vastly easier to land on Phobos, do a little reconnaissance, and then take off and return home. As a bonus, on the journey to Phobos, astronauts can bring along hardware necessary for eventual Martian settlement, making the ride a lot easier for the next astronauts.

3. THERE ARE TOURIST ATTRACTIONS.

If you want to climb a really tall mountain, Mars is where you want to be. The tallest mountain on Earth, Mount Everest, is 29,029 feet tall. Olympus Mons on Mars is over 72,000 feet in height, making it the tallest mountain by far on any planet in the solar system. Mountaineers might also want to check out NASA's trail map for hiking the famous Face on Mars. Before you go, be sure to check the latest Martian weather report. If canyons are more your speed, you'll want to visit Valles Marineris. It is the size of North America and, at its bottom, four miles deep. (In the solar system, only Earth's Atlantic Ocean is deeper.) Once Earth's ice caps finish melting, you can always visit the ones on Mars. (If you have a telescope, you can easily see them; they are the planet's most distinctive features visible from your backyard.)

4. IF THERE ARE MARTIANS, THEY ARE MICROBES.

The idea of Martians goes back over a century, partially because of popular fiction (War of the Worlds, the 1897 novel by H.G. Wells, sees a Martian invasion force invade England) and partially because of Percival Lowell, the famed astronomer who wrote prolifically on the canals he thought he was observing through his telescope, and why they might be necessary for the survival of the Martian people. (Mars was drying up.)

Though it's easy to dismiss such conclusions today, at the time Lowell not only popularized space science like few others, but left behind the Lowell Observatory in Flagstaff, Arizona—one of the oldest observatories in America and the place where Clyde Tombaugh discovered Pluto.

Today, scientists work tirelessly to unlock the complex geologic history of Mars, to determine whether life exists there today, or did long ago. "We think that Mars was most globally conducive to life around 3.5 to 3.8 billion years ago," Runyon tells Mental Floss. "In the Mars geologic history, that's the end of the Noachian and toward the beginning of the Hesperian epochs." There may once have been a hemispheric ocean on Mars. Later, the world might have alternated between being wet and dry, with an ocean giving way to massive crater lakes. Where there's water, there's a good chance of life.

"If we found life on Mars—either extinct or current—that's really interesting," says Runyon, "but more interesting than that, is whether this life arose independently on Mars, separate from Earth." It is conceivable that meteorite impacts on Earth blasted life-bearing rocks into space and eventually to the Martian surface. "A second life emergence on Mars is not just a geological question. It's a biogeochemical question. We know that Mars is habitable, but we haven't answered the question of whether it had, or has, life."

5. NASA SPENDS A LOT OF TIME OUT THERE.

Mars hasn't hurt for missions in recent years, though scientists now warn of an exploration desert beyond 2020. But that doesn't mean we humans don't have eyes on the planet. Presently in orbit around the planet are the Mars Reconnaissance Orbiter, which images and scans the planet; MAVEN, which studies its atmosphere; Mars Express, the European Space Agency's first Mars mission; MOM, the first Mars mission by the Indian Space Research Organization; the ESA's ExoMars Trace Gas Orbiter, which is searching for methane in the Martian atmosphere; and Odyssey, which studies Mars for water and ice signatures, and acts as a communications relay for vehicles on the ground.

Rolling around on the Martian surface are Curiosity and Opportunity—NASA missions both—which study Martian geology. Though the Russians and Europeans have tried mightily to do so, NASA is the only space agency to successfully land spacecraft on the Martian surface (seven times).

Next year, the delayed InSight mission will launch for Mars, where it will land and study the planet's interior, and in three years, NASA will land the Mars 2020 rover. Where Curiosity studies Mars for signs of habitability, Mars 2020 will look for inhabitants.

"It is going to collect samples that will hopefully be brought back to Earth," says Runyon. "The three landing sites selected for Mars 2020 are Northeast Syrtis, Jezero Crater, and Columbia Hills within Gusev Crater, which is where the dead rover Spirit is currently sitting. Each of these sites is a hydrothermal environment dating from the Noachian-Hesperian boundary. These are some of the most perfect places to look for past signs of Martian life, and can help answer the question of whether life had a second Genesis on Mars."

6. MARS IS CHANGING, BUT NOBODY KNOWS WHY.

Most people don't realize how active Mars is," Harrison tells Mental Floss. "Other planets aren't just these dead worlds that are frozen in time outside of our own. There are actually things happening there right now." Imagery from the HiRISE and Context Camera instruments on the Mars Reconnaissance Orbiter have revealed such events as avalanches, sand dune erosion [PDF], and recurring slope lineae (flowing Martian saltwater).

Things are moving, but it's not always clear why. "There's a lot of material that has been eroded away," says Harrison. "We have entire provinces of the planet that look like they've been completely buried and then exhumed. And that's a lot of material. The big question is, where did it all go? And what process eroded it all away?" Curiosity might help answer the question, but to really understand the processes and history of the fourth rock from the Sun, we're going to need to send geologists in spacesuits.

That's because "you can't replace human intuition with a rover," Harrison says. "Looking at a picture on your computer is not the same as standing there and looking around at the context, stratigraphic columns, being able to pick up the rocks and manipulate them, take a hammer to things. So once humans land on the surface, it'll be kind of like the difference between what we knew about Mars from Viking and Mars Global Surveyor and then the revolution between Mars Global Surveyor and Mars Reconnaissance Orbiter. Our view of what we think happened on Mars is going to completely change, and we'll find out that a lot of what we thought we knew was wrong."

nextArticle.image_alt|e
Mars' dust storms can be global. In these images taken a month apart in 2001, the dust storm near the southern polar ice cap (left) soon enveloped the entire planet (right).
NASA/JPL-Caltech
arrow
Space
More Details Emerge About 'Oumuamua, Earth's First-Recorded Interstellar Visitor
 NASA/JPL-Caltech
NASA/JPL-Caltech

In October, scientists using the University of Hawaii's Pan-STARRS 1 telescope sighted something extraordinary: Earth's first confirmed interstellar visitor. Originally called A/2017 U1, the once-mysterious object has a new name—'Oumuamua, according to Scientific American—and researchers continue to learn more about its physical properties. Now, a team from the University of Hawaii's Institute of Astronomy has published a detailed report of what they know so far in Nature.

Fittingly, "'Oumuamua" is Hawaiian for "a messenger from afar arriving first." 'Oumuamua's astronomical designation is 1I/2017 U1. The "I" in 1I/2017 stands for "interstellar." Until now, objects similar to 'Oumuamua were always given "C" and "A" names, which stand for either comet or asteroid. New observations have researchers concluding that 'Oumuamua is unusual for more than its far-flung origins.

It's a cigar-shaped object 10 times longer than it is wide, stretching to a half-mile long. It's also reddish in color, and is similar in some ways to some asteroids in our solar system, the BBC reports. But it's much faster, zipping through our system, and has a totally different orbit from any of those objects.

After initial indecision about whether the object was a comet or an asteroid, the researchers now believe it's an asteroid. Long ago, it might have hurtled from an unknown star system into our own.

'Oumuamua may provide astronomers with new insights into how stars and planets form. The 750,000 asteroids we know of are leftovers from the formation of our solar system, trapped by the Sun's gravity. But what if, billions of years ago, other objects escaped? 'Oumuamua shows us that it's possible; perhaps there are bits and pieces from the early years of our solar system currently visiting other stars.

The researchers say it's surprising that 'Oumuamua is an asteroid instead of a comet, given that in the Oort Cloud—an icy bubble of debris thought to surround our solar system—comets are predicted to outnumber asteroids 200 to 1 and perhaps even as high as 10,000 to 1. If our own solar system is any indication, it's more likely that a comet would take off before an asteroid would.

So where did 'Oumuamua come from? That's still unknown. It's possible it could've been bumped into our realm by a close encounter with a planet—either a smaller, nearby one, or a larger, farther one. If that's the case, the planet remains to be discovered. They believe it's more likely that 'Oumuamua was ejected from a young stellar system, location unknown. And yet, they write, "the possibility that 'Oumuamua has been orbiting the galaxy for billions of years cannot be ruled out."

As for where it's headed, The Atlantic's Marina Koren notes, "It will pass the orbit of Jupiter next May, then Neptune in 2022, and Pluto in 2024. By 2025, it will coast beyond the outer edge of the Kuiper Belt, a field of icy and rocky objects."

Last month, University of Wisconsin–Madison astronomer Ralf Kotulla and scientists from UCLA and the National Optical Astronomy Observatory (NOAO) used the WIYN Telescope on Kitt Peak, Arizona, to take some of the first pictures of 'Oumuamua. You can check them out below.

Images of an interloper from beyond the solar system — an asteroid or a comet — were captured on Oct. 27 by the 3.5-meter WIYN Telescope on Kitt Peak, Ariz.
Images of 'Oumuamua—an asteroid or a comet—were captured on October 27.
WIYN OBSERVATORY/RALF KOTULLA

U1 spotted whizzing through the Solar System in images taken with the WIYN telescope. The faint streaks are background stars. The green circles highlight the position of U1 in each image. In these images U1 is about 10 million times fainter than the faint
The green circles highlight the position of U1 in each image against faint streaks of background stars. In these images, U1 is about 10 million times fainter than the faintest visible stars.
R. Kotulla (University of Wisconsin) & WIYN/NOAO/AURA/NSF

Color image of U1, compiled from observations taken through filters centered at 4750A, 6250A, and 7500A.
Color image of U1.
R. Kotulla (University of Wisconsin) & WIYN/NOAO/AURA/NSF

Editor's note: This story has been updated.

nextArticle.image_alt|e
Mars' dust storms can be global. In these images taken a month apart in 2001, the dust storm near the southern polar ice cap (left) soon enveloped the entire planet (right).
NASA/JPL, YouTube
arrow
Space
Watch NASA Test Its New Supersonic Parachute at 1300 Miles Per Hour
NASA/JPL, YouTube
NASA/JPL, YouTube

NASA’s latest Mars rover is headed for the Red Planet in 2020, and the space agency is working hard to make sure its $2.1 billion project will land safely. When the Mars 2020 rover enters the Martian atmosphere, it’ll be assisted by a brand-new, advanced parachute system that’s a joy to watch in action, as a new video of its first test flight shows.

Spotted by Gizmodo, the video was taken in early October at NASA’s Wallops Flight Facility in Virginia. Narrated by the technical lead from the test flight, the Jet Propulsion Laboratory’s Ian Clark, the two-and-a-half-minute video shows the 30-mile-high launch of a rocket carrying the new, supersonic parachute.

The 100-pound, Kevlar-based parachute unfurls at almost 100 miles an hour, and when it is entirely deployed, it’s moving at almost 1300 miles an hour—1.8 times the speed of sound. To be able to slow the spacecraft down as it enters the Martian atmosphere, the parachute generates almost 35,000 pounds of drag force.

For those of us watching at home, the video is just eye candy. But NASA researchers use it to monitor how the fabric moves, how the parachute unfurls and inflates, and how uniform the motion is, checking to see that everything is in order. The test flight ends with the payload crashing into the ocean, but it won’t be the last time the parachute takes flight in the coming months. More test flights are scheduled to ensure that everything is ready for liftoff in 2020.

[h/t Gizmodo]

SECTIONS

arrow
LIVE SMARTER