7 Astounding Facts About Jupiter

Jupiter is the largest planet in the solar system. It's so large that all of the other planets in the solar system could fit inside it. If we really paid attention to the sky, we'd do nothing but freak out that there's a giant, terrifying, stormy orb of pressure and gas up there. Mental Floss spoke about Jupiter with an expert: Barry Mauk, the lead investigator of the JEDI instrument on the Juno spacecraft, which entered Jupiter's orbit on July 4, 2016 to conduct the most in-depth scientific analysis of the planet ever. Mauk is a principal staff physicist at the Johns Hopkins University Applied Physics Laboratory, which built JEDI. Here's what you need to know about Jupiter.

1. JUPITER IS REALLY, REALLY BIG.

Thirteen hundred Earths could fit inside of Jupiter, like a big celestial gumball machine. It's big, OK? And its powerful magnetosphere is even bigger—bigger, in fact, than the Sun, a fact made even more astounding when you consider that the Sun could hold a thousand Jupiters.

The amount of time it takes Jupiter to rotate on its axis is known as a Jovian day (Jove is another name for Jupiter in Roman mythology). It only takes about 9.9 hours, but a Jovian year is 4333 Earth days long.

Jupiter is about 5.2 astronomical units from the Sun, compared with Earth's 1 AU. As such, it takes sunlight about 43 minutes to reach Jupiter. The planet has a lot of moons, too: 69 of them, and that number is still growing. (Two of those moons were discovered just this summer.) Those moons are good news for the future of the planet's exploration, as they might provide a landing surface. Jupiter isn't an option because it is a giant ball of gas with no surface that we know of—or at least, no surface that is accessible.

2. YES, IT'S A GAS GIANT. NO, YOU CAN'T JUST FLY YOUR SPACESHIP THROUGH IT.

Despite being a giant ball of gas, you can't fly through it like a cloud. Its furious storms, ammonia atmosphere, and atmospheric pressure would all annihilate you. How great is the pressure at the center of Jupiter? Nobody knows, exactly, because its center is such a confounding mystery. But pressure at sea level here on Earth is about 14.7 pounds per square inch. That's pretty comfortable. Pressure at the bottom of the Mariana Trench in the Pacific Ocean is much less pleasant at about 16,000 psi. Still, with the right equipment, it's manageable, as submarines like the Deepsea Challenger have proven.

Jupiter's pressure is not manageable. At something like 650,000,000 psi, the "bottom" of Jupiter would compress the Deepsea Challenger to… nobody knows! Because once you start reaching those pressures and heats, the very properties of matter itself become unknowable. (If, in fact, its center consists of liquid metallic hydrogen, you know right away that something weird is going on down there, because we're describing hydrogen as liquid metal. Down is up, up is down—nothing matters at the center of Jupiter.)

3. JUPITER'S GORGEOUS AURORA? IT'S A SIGN THAT JUPITER IS TRYING TO SPIN UP SPACE ITSELF.

One of the things that most excites Mauk about Jupiter, he tells Mental Floss, is that it is a stepping stone from our solar system to the rest of the universe. "Jupiter is the place to go to if you want to understand how processes that operate within our solar system might apply to more distant astrophysical objects out in the universe," he says. Jupiter, for example, can help scientists unlock some mysteries of stellar nurseries and regions like the Crab Nebula, where powerful magnetic fields play essential roles.

Consider Jupiter's stunning auroras. "Earth's aurora is powered by the solar wind blowing over the magnetic field of Earth. Jupiter's aurora is powered by rotation. And Jupiter's very bright aurora—it's the most intense aurora in the solar system—is a signature of Jupiter's attempt to spin up its space environment. Jupiter is trying to keep the space environment around it rotating at the same rate that Jupiter is."

Why is this important? Because astrophysical objects use magnetic fields to shed angular momentum. "An example of that is solar system formation," he says, where molecular clouds that would normally collapse to form stellar or solar systems spin so fast they can't collapse. "Magnetic fields are thought to be one of the mechanisms by which angular momentum gets shed by a central object." Auroras are evidence of this phenomenon.

4. ITS GIANT RED SPOT IS ACTUALLY A GIANT RED CATEGORY 12 HURRICANE.

The Great Red Spot is a massive storm that has been raging on Jupiter for centuries. Though its size varies, at its largest you could fit Earth, Venus, and Mars in there (and probably squeeze Mercury in there too if you really tried); at its smallest it could "only" hold the planet Earth. With wind speeds peaking at 400 miles per hour, it doesn't even fit on the Saffir-Simpson Hurricane Scale used to measure such giant storms on Earth, though you could extrapolate its speed to being about a Category 12—more powerful, even, than "Humpty's revenge." (It would be an F7 tornado on the Fujita scale—an F7 tornado the size of the terrestrial planets of the solar system. The most powerful tornado ever recorded on Earth was an F5, in Oklahoma.)

Scientists recently discovered that the red storm is raging at 2400°F, heating the planet's upper atmosphere. Still, the chemistry of the spot and its exact nature are still in question. Answers may come on July 11, 2017, when the Juno spacecraft makes a direct pass over the Great Red Spot, marking the most intensive exploration of it ever attempted.

5. THE MOST PRESSING QUESTION FOR SCIENTISTS: HOW DID JUPITER FORM?

Despite having been studied intently since 1609, when Galileo Galilei perfected his telescope, Jupiter remains a stormy mystery in space. The most pressing question is how the planet formed. Answering it will reveal to scientists the story of the early solar system and unlock the secrets of the formation of other worlds. As the most dominant object orbiting the Sun, and likely the oldest planet, in a very real way, the story of Jupiter is the story of the solar system itself.

Essential to the story of Jupiter's birth is whether or not it has a core. The best guess is that pressures at Jupiter's center have compressed hydrogen to a liquid metal state. (Hydrogen is by far the dominant constituent of Jupiter.)

One of the prime objectives of the Juno mission is to find out if a rocky core exists at the planet's center. The traditional theory is that Jupiter has a rocky core that's about 10 times the mass of Earth, and that core collects gases and other materials around it. Behold: the Jupiter you know and love. But recently, some scientists have proposed that Jupiter may have no core at all, and may have formed from the gas and dust particles that "lumped together" just after the formation of the Sun and compressed rapidly, allowing a planet to form without need of a rocky base.

Current data from the Juno mission suggests that perhaps neither model is accurate, and that Jupiter's core is "fuzzy"—without a clear line separating layers—and that it is much larger than anyone expected. Such unexpected results are consistent with Juno's tendency thus far to return textbook-shredding revelations. Already, data returned from the mission have invalidated vast swaths of conventional thinking concerning the Jovian interior.

6. WE'RE KEEPING A CLOSE EYE ON IT.

The Juno spacecraft isn't our first attempt to get a grip on the cosmic behemoth that is Jupiter, and won't be our last. The spacecraft is currently zipping along just 3000 miles above Jupiter's cloud, at top speeds of 130,000 mph. It is rotating on a hugely oblong orbit that takes it close to the planet and then zinging off 5 million miles away. This orbit lasts 53 days. The mission has completed five orbits so far, four of which collected science data, and the mission is budgeted through 2018, at which time NASA officials will have to decide whether to extend its mission and learn more, or just shrug and say, "Ehn, we know enough. Destroy the spacecraft."

Once Juno ends, the next mission slated to launch to the Jovian system is the European Space Agency's JUICE mission in 2022. NASA's Europa Clipper will launch in that same timeframe, and upon its arrival in the system, will study the ocean moon Europa from Jupiter's orbit (where it is largely protected from the punishing radiation environment caused by the planet's magnetosphere).

7. YOU DON'T NEED TO TAKE NASA'S WORD ON JUPITER. YOU CAN SEE IT YOURSELF.

With just about any telescope and a little bit of work, you can see Jupiter in surprising detail. Your view won't be as crisp as the one from Galileo (the spacecraft), but it'll be at least as good as it was for Galileo (the scientist). You can see its stripes from Earth, and with enough telescope power, even the Great Red Spot. Point a pair of binoculars at Jupiter, and you can see the four Galilean moons—Io, Europa, Callisto, and Ganymede—the same ones found by Galileo, who by spotting the moons ended the idea of a geocentric model of the solar system. Jupiter will next be at opposition (that is, as close to Earth and as bright as it'll get) on May 9, 2018.

See What Hurricane Florence Looks Like From Space

NASA via Getty Images
NASA via Getty Images

As Hurricane Florence continues to creep its way toward the Carolinas, it’s repeatedly being described as both "the storm of the century” and "the storm of a lifetime” for parts of the coastlines of North and South Carolina. While that may sound like hyperbole to some, Alexander Gerst—an astronaut with the European Space Agency—took to Twitter to prove otherwise with a few amazing photos, and issued a warning to “Watch out, America!”

According to the National Weather Service, “Hurricane Florence will be approaching the Carolina shores as the day progresses on Thursday. Although the exact timing, location, and eventual track of Florence isn't known, local impacts will likely begin in the afternoon hours and only worsen with time throughout the evening and overnight period.”

On Tuesday, Wilmington, North Carolina's National Weather Service took the warning even one step further, writing: "This will likely be the storm of a lifetime for portions of the Carolina coast, and that's saying a lot given the impacts we've seen from Hurricanes Diana, Hugo, Fran, Bonnie, Floyd, and Matthew. I can't emphasize enough the potential for unbelievable damage from wind, storm surge, and inland flooding with this storm.”

Gerst’s photos certainly drive that point home.

Is Pluto a Planet After All? A New Argument Emerges

iStock
iStock

It’s been a tumultuous few years for Pluto. The dwarf planet, first discovered in 1930 by astronomer Clyde Tombaugh, was stripped of its more esteemed planet status in 2006 by the International Astronomical Union (IAU) because its orbit overlapped that of Neptune. A new set of IAU criteria mandated that a planet must orbit the sun, be spherical as a result of gravity, and "clear" the "neighborhood" around its orbit, asserting itself as the dominant presence. Pluto met the first and second edicts but not the third, relegating it to the lesser dwarf planet designation.

That declaration led to an ongoing debate over whether Pluto really earned its demotion. The newest and potentially most compelling argument comes courtesy of a paper from researchers at the University of Central Florida's Space Institute and published in the planetary science journal Icarus. In it, first author Philip Metzger asserts that no one since 1802 has used the cleared-space argument to define a planet. Referring to the IAU's definition as "sloppy," Metzger and his co-authors point out that no one else has separated asteroids from planets by using the clearing mandate. Planets, the paper argues, should not be held to dynamic descriptions of bodies that may change over time.

"We now have a list of well over 100 recent examples of planetary scientists using the word planet in a way that violates the IAU definition, but they are doing it because it's functionally useful," Metzger said in a statement. "It's a sloppy definition. They didn't say what they meant by clearing their orbit. If you take that literally, then there are no planets, because no planet clears its orbit."

Metzger is advocating instead for a planet obtaining its status due to being large enough to achieve a gravity-influenced spherical shape that activates geological changes.

Speaking with CNN, IAU spokesperson Lars Lindberg Christensen indicated a motion could be put forward to have the group reevaluate the classification but that no one had yet done so.

Whatever Pluto is or may one day become, it was a planet to Tombaugh, who wasn't around long enough to experience the reclassification. He died in 1997. In 2015, his ashes, attached to the New Horizons space probe, entered Pluto's orbit after nine years of travel.

[h/t Science Alert]

SECTIONS

arrow
LIVE SMARTER