CLOSE
iStock
iStock

13 Surprising Facts About the Armpit

iStock
iStock

The human body is an amazing thing. For each one of us, it's the most intimate object we know. And yet most of us don't know enough about it: its features, functions, quirks, and mysteries. Our series The Body explores human anatomy, part by part. Think of it as a mini digital encyclopedia with a dose of wow.

Tucked away in that damp crevice between your arm and torso, the armpit—a.k.a. the axilla—is often the source of unpleasant odors and embarrassing wetness, and a hairy font of annoyance. But it's also an important juncture that protects important lymph nodes and soft tissue. Mental Floss spoke to microbiologist Alex Berezow, a senior fellow of biomedical science with the American Council on Science and Health, about this often overlooked spot. Here are 13 things we learned.

1. YOUR ARMPITS ARE CHOCK FULL OF LYMPH NODES.

In the small hollow of each armpit are a surprisingly large number of lymph nodes, approximately 20, in two clumps, though you can't usually feel them unless they're swollen. (One clump is closer to the surface than the other.) These lymph nodes are actually an important part of your body's immune system and serve to filter toxins out of tissues. They also produce a variety of immune cells known as lymphocytes that fight infection. In some kinds of breast cancer, these affected lymph nodes may have to be surgically removed.

2. THEY PRODUCE A DIFFERENT KIND OF SWEAT FROM OTHER BODY PARTS.

Not all sweat is created equal. In fact, your skin has two types of sweat glands that help to cool you down: eccrine glands and apocrine glands. Eccrine glands cover most of the surface of your body, and are responsible for that thin sheen of sweat on your brow and extremities during heat and exercise. However, your armpits are abundant in apocrine glands (also found in your groin). These glands are copious in places with more hair follicles, and the sweat they secrete tends to be thicker.

3. YOUR PITS ARE TEEMING WITH BACTERIA.

Your skin is home to many different kinds of bacteria, some of which are quite beneficial, collectively known as a microbiome. This microbiome can vary depending on the body part—so the bacteria on your hand can be vastly different from the moist, warm, dank environment of your armpits.

"Because of oil and sweat secretion, the armpit provides a nice home for many different kinds of bacteria," Berezow tells Mental Floss. Compared to other parts of our skin, armpits are rather densely populated, he explains. Not only that, but armpit microbiomes vary from person to person. "One study showed, after sampling nine people, that there were three types of armpit bacterial communities: One was dominated by Betaproteobacteria, a second by Corynebacterium, and a third by Staphylococcus. So one person's armpit bacteria won't necessarily be the same as somebody else's."

4. IT'S NOT YOUR SWEAT THAT STINKS.

"The secretions our armpits make don't stink. Bacteria break down the compounds, and those breakdown products stink," says Berezow. The bacteria that live in the moist crevices of your armpits interact with your sweat, which contains volatile fatty acids and odorous steroids (among other compounds). That creates a product known as thioalcohols, whose oniony, meaty scents you're likely familiar with if you've ever been stuck in a crowded elevator, subway, or gym at peak workout time.

5. SCIENTISTS ARE WORKING ON A DEODORANT THAT WOULD KILL ONLY SOME BACTERIA…

The researchers plan to engineer a deodorant that would kill only the stink-producing bacteria, instead of the entire armpit microbiome. That's because some good bacteria also live under there, like those that help protect you against fungal infections.

6. …BECAUSE REGULAR DEODORANTS CHANGE YOUR ARMPIT MICROBIOME.

…and not necessarily for the better. "Deodorants change the composition of the microbiome," Berezow says. He cites a study that found "antiperspirant reduces the number of bacteria in our armpits, but interestingly seems to encourage a greater diversity of microbes." He adds, "deodorant seems to increase the number of bacteria compared to people who don't wear deodorant."

Scientists have also found that the pits of people who usually use antiperspirants or deodorants, but stopped for a couple of days as part of the study, grew crowded with an overabundance of Staphylococcaceae—the bacteria that causes staph infections. The individuals who habitually did not use products were dominated by the friendlier—and yet stinkier—Corynebacterium. We just can't win. 

7. WHY DON'T YOUNG KIDS' PITS STINK?

While teenagers often exist in a funk so tangible you can almost see it, most children do not begin to have stinky pits until their tweens. A process called adrenarche begins around age eight for some kids (but often even later) in which the adrenal glands start to secrete hormones called androgens. While these are typically thought of as male hormones, both boys and girls produce them in different quantities. At this stage, not only can sweat start to take on its pungent stench, but children can begin to grow armpit and groin hair. Not much is understood about adrenarche, except that it may be a necessary step in order to trigger puberty. Which may explain why middle school locker rooms do tend to get whiffy.

8. WOMEN'S PITS SMELL LIKE ONIONS AND MEN'S LIKE CHEESE.

Researchers from Firmenich, a company in Geneva, set out to understand the subtle nuances in body odor to better market deodorant products to consumers. In their 2009 study, published in Chemical Senses, they discovered that your unique bouquet may be different depending on whether you're a cisgender man or woman. Women's sweat contained higher levels of an odorless sulphur-containing compound that produces a pungent oniony thioalcohol when combined with the bacteria in the underarm. Men's sweat held higher levels of a fatty acid that produced a "cheesy" scent when the bacteria of the armpit came in contact with it.

9. WOMEN DIDN'T ALWAYS SHAVE THEIR ARMPITS.

Since women were socialized to keep most of their bodies covered for centuries, exposing an armpit was an unlikely event in a public place before 1915. However, an ad in Harper's Bazaar changed everything when it suggested that in order to engage in "Modern Dancing," women should first remove their "objectionable" underarm hair. By the Roaring Twenties, many women's pits were as hairless as the day they were born.

10. SOCIAL EXPECTATIONS SHAPE OUR COMFORT WITH ARMPIT HAIR.

Despite armpit hair being as natural as the hair on our heads—and everywhere else it grows—women's armpit hair tends to be controversial. A feminist scholar set out to explore some of the reasons for this in a 2013 study in the Psychology of Women Quarterly and found that social expectations play a huge role in women seeing body hair—on themselves and on other women—as "disgusting" or simply socially unacceptable. Even women who purposely grew their pit-hair out to flout societal expectations felt self-conscious showing armpit hair in social settings.

11. …AND SO MIGHT OUR ANIMAL NATURE.

The 2013 study, conducted by a professor at Arizona State University, suggests that this revulsion with armpit hair may be a Western aversion to our primal roots as animals. Other animals send out chemical signals called pheromones to attract mates. We still don't know whether pheromones exist in humans, but plenty of evidence indicates we are highly sensitive to each other's biochemicals. If pheromones do exist, body hair around the groin and armpits could be a likely place to find them. But as "civilized" people, we believe the process of finding a partner lies in our hearts and minds—not in our armpits. Maybe one day we'll find out it's all of the above. 

12. YOUR ARMPIT LYMPH NODES MAY WARN YOU OF BREAST CANCER.

Most of the time a swollen lymph node in the armpit is little more than a sign of a cold or flu virus attacking your body. However, it can also be an early symptom of inflammatory breast cancer, an aggressive form of cancer that is best treated when caught as early as possible. Other areas that may swell in this cancer are your breast itself, and around your collarbone. If you have these kinds of sudden swellings, it's a good idea to see a doctor.

13. SOME PEOPLE GET THEIR ARMPITS BOTOXED.

A condition known as hyperhidrosis—excessive sweating—can be frustrating for those who'd like to be able to simply wear clothing they don't drench. According to Dr. Sonam Yadav, medical director of a cosmetic dermatology clinic in New Delhi, India, Botox is used to treat underarm sweating (yes, here in the U.S. too). Yadav tells Mental Floss, "It works by regulating the synergy between the neuromuscular junction and the sweat glands."

nextArticle.image_alt|e
iStock
arrow
The Body
11 Amazing Facts About Veins
iStock
iStock

The human body is an amazing thing. For each one of us, it's the most intimate object we know. And yet most of us don't know enough about it: its features, functions, quirks, and mysteries. Our series The Body explores human anatomy, part by part. Think of it as a mini digital encyclopedia with a dose of wow.

Beneath your skin, and deeper within your body, run networks of veins. These thin, tube-like structures are an essential part of the circulatory system, which distributes blood and nutrients throughout the body. What Thomas E. Eidson, a phlebologist (vein disease specialist) at Atlas Vein Care in Arlington, Texas, finds most compelling about veins is "how absolutely intricate and fragile the circulatory system can seem and yet at the same time be so resilient and adaptive."

1. VEINS ARE ONE OF THREE KINDS OF BLOOD VESSELS.

Three types of blood vessels make up the human circulatory system: arteries, veins, and capillaries. All three of these vessels transport blood, oxygen, nutrients, and hormones to organs and cells. While arteries carry oxygenated blood away from the heart to the tissues of the body, veins carry oxygen-depleted blood from the tissues back to the heart, and in fact have special valves that help them to achieve this directional flow. Capillaries are tiny blood vessels that connect arteries to veins and allow nutrients in the blood to diffuse to the body's tissues.

2. A SINGLE VEIN IS COMPRISED OF THREE LAYERS.

Veins, small as they are, consist of three layers. According to Eidson, these layers are known as the tunica adventitia, tunica media, and tunica intima. The tunica adventitia is the tough outer layer of arteries and veins and is made mainly of connective tissues. The middle layer, tunica media, is all smooth muscle and elastic fibers. This layer is thinner in veins than in arteries. The innermost layer, tunica intima, comes in direct contact with blood as it flows through the vein. This structure is made up of smooth cells and has a hollow center known as the lumen.

3. OUR BODIES CONTAIN UP TO 100,000 MILES OF BLOOD VESSELS.

All the arteries, veins, and capillaries of a human child, stretched end to end, are estimated to wrap around the Earth about 2.5 times (the equivalent of about 60,000 miles). The amount of blood vessels in a human adult would circle our planet four times, equaling 100,000 miles, according to Eidson.

4. CAPILLARIES ARE SMALLER THAN THE WIDTH OF A HUMAN HAIR.

Capillaries are tiny—at their smallest, they're less than a third of the thickness of a human hair. But to really put it into perspective, consider that when red blood cells flow through capillaries, "[they] must travel through them one cell at a time in a single-file line," Eidson says.

5. PHYSICIANS HAD THE CIRCULATORY SYSTEM ALL WRONG UNTIL THE 17TH CENTURY.

"Physicians followed an incorrect model of the circulatory system proposed by Greek physician and philosopher Galen of Pergamon from about the 2nd century CE until the 1600s," Eidson says. According to a paper in the Journal of Thrombosis and Haemostasis, Galen thought there were two systems: one in which the liver, not the heart, produced blood that was distributed in the body centrifugally, and another where arteries carried air from the lungs and more blood to tissues. "Blood was not seen to circulate but rather to slowly ebb and flow," author W.C. Aird wrote. This attitude prevailed until 1628, when English physician William Harvey first correctly described the circulatory system and the function of the heart.

6. THE BODY CAN FORM NEW VESSELS WHEN ONE IS BLOCKED.

Eidson says the body can form new blood vessels if a pathway gets blocked, a process called angiogenesis or neovascularization. On the positive side, this is the process by which flesh wounds heal, drawing nutrients and oxygen from the nearest healthy capillaries to the site of those that are damaged; this isn't too hard given how numerous capillaries are in the body. On the negative side, this same process can lead to corneal neovascularization, in which new blood vessels invade the cornea from the limbus, a part of the eye where the cornea meets the sclera—the white part of the eye. The extra blood vessels can cause inflammation and scarring of the cornea, and even result in blindness.

7. ONE PHYSICIAN PERFORMED A PIONEERING EXPERIMENT ON VEINS IN THE ARM—HIS OWN.

German physician Werner Forssmann performed a cardiac catheterization on himself in 1929. In this procedure, a thin tube called a catheter is inserted into one of the large blood vessels in the arm that leads to the heart. The medical community at the time believed studying the heart was highly unorthodox, but Forssmann was determined to prove them wrong. If the procedure succeeded, Forssmann would be able to show that a catheter could assess the pressure in the organ and how well the heart is working.

He made an incision on the inside of his left elbow and threaded the thin tube into his heart—and had a technician take an X-ray to prove the penetration was a success. Then he calmly removed the catheter from his arm with no side effects. Now, "it's a procedure performed in the U.S. approximately 1 million times per year," Eidson says. Forssmann also went on to win the Nobel Prize for Medicine in 1956, shutting up his detractors.

8. STRONG VEINS ARE ESSENTIAL TO A STRONG BODY.

Veins return oxygen-depleted blood back to the heart against the force of gravity. "If veins are too weak—a condition called venous insufficiency—blood can pool in the legs and skin causing swelling, pain, discoloration, and wounds," says Albert Malvehy, a venous and lymphatic specialist and phlebology sonographer in Delray Beach, Florida. Chronic venous insufficiency is more common in people who are obese, pregnant, or who have a family history of the problem. It can also be caused by high blood pressure in the leg veins, as a result of sitting or standing for long stints; not enough exercise, smoking, or deep vein thrombosis (blood clots). Depending on the severity, treatments may range from medication to surgery.

9. VARICOSE VEINS ARE CAUSED BY DAMAGED VALVES.

When venous valves are damaged, blood can flow in the wrong direction and lead to stretched-out, bulging veins, Gregory P. Kezele, the medical director of Vein Clinics of Cleveland, tells Mental Floss. Varicose veins, which can range in color from purplish to neutral, appear twisted and gnarled, and may be raised on the skin's surface. (Don't confuse them with spider veins, which are clusters of bluish or reddish veins near the surface of the skin that resemble webs, hence the name.) Conditions like pregnancy, obesity, and genetic predisposition can cause them. Once varicose veins appear—usually on the legs—they require a medical procedure to get rid of them.

Veins are a critical part of normal circulation in the body, so varicose veins can be more than just a cosmetic issue. "They can be a sign of a deeper circulation problem," Malvehy says. "People with varicose veins, leg pain, restless legs syndrome, leg wounds, and leg swelling should be checked by a vein specialist."

One in five people have vein disease. As recently as 10 years ago, there were few treatments to offer varicose vein sufferers except for vein stripping surgery, in which problematic veins are removed. Malvehy says that over the past decade, "there has been a revolution in treatment, such that almost all vein issues can be treated in the office with no downtime."

One common treatment is sclerotherapy, in which a liquid solution is forced into the bulging vein to stop the flow of blood. The vein will eventually turn into scar tissue and fade away, though follow-up treatments might be needed.

Another treatment is thermal ablation, performed using ultrasound guidance. Kezele explains that a physician will insert a small catheter into the diseased veins, which then delivers heat; the heat will close off blood flow to the problem veins and improve circulation as blood diverts to healthy veins.

10. AN EARLY DEPICTION OF VEIN DISEASE APPEARS IN A SCULPTURE FROM 340 BCE.

According to Kezele, the first depiction of vein disease appears on a Greek tablet dating to the 4th century BCE. The carving, from the sanctuary of Amynos, shows a man clutching a giant, disembodied leg with a bulging vein. Kezele suggests on his website that "it shows the Greek official Lysimachides dedicating a fake leg suffering from a varicose vein to Amynos," an Athenian hero revered as a healer.

11. VEINS MIGHT "POP OUT" WHEN YOU EXERCISE.

There are lots of theories on why athletes often have big, bodaciously bulging veins visible on their arms or legs after they work out. The ropy look is completely normal and temporary. Writing in Scientific American, physiology professor Mark A. W. Andrews said that a likely cause of protruding veins is arterial blood pressure during exercise. Blood that would otherwise be resting in capillaries is forced out by the pressure into the surrounding muscle. That process—called filtration—makes the muscles swell, which pushes nearby veins closer to the skin's surface so they take on a bulging appearance. The process is more noticeable in athletes and body builders with very little subcutaneous fat.

arrow
The Body
11 Amazing Facts About the Nipple

The human body is an amazing thing. For each one of us, it's the most intimate object we know. And yet most of us don't know enough about it: its features, functions, quirks, and mysteries. Our series The Body explores human anatomy, part by part. Think of it as a mini digital encyclopedia with a dose of wow.

Despite its relatively small size on the human body, the nipple gets a lot of attention. Biologically, the nipple serves two key functions: In women, nipples deliver milk out of the ducts within the breast to babies, and for women and men, they serve as erogenous zones. Check out our list of fascinating facts about this often-misunderstood body part.

1. THE NIPPLE HAS ITS OWN SWEAT GLANDS.

The nipple is the raised bump or protrusion on top of the breast that sits on the circular area known as the areola. The areola is often much larger in circumference than the actual nipple, as it holds small sweat glands called Montgomery glands (named for William Fetherstone Montgomery, an Irish obstetrician who first described them). The sole function of these glands is to secrete fluids during breastfeeding to lubricate the nipple and to produce a scent that attracts the baby to its mother's breast.

2. NIPPLES CAN POKE IN OR OUT.

Not all nipples point jauntily outward. Men's and women's nipples can be inverted, essentially pointing inward. In the worst-case scenario, "the skin adheres to itself and has to peel open to [turn outward] initially, and [that] can be painful," Constance Chen, a board-certified plastic surgeon and clinical assistant professor of plastic surgery at Weill Cornell Medical College in New York, tells Mental Floss. For most women, however, an inverted nipple causes neither pain nor prevents breastfeeding with proper technique or nipple shields.

3. SOME PEOPLE HAVE EXTRA NIPPLES.

While most people have two nipples, one atop each breast (yes, both women and men have breasts), some people have extra or "supernumerary" nipples outside of the typical location. One Indian man was even found to have seven.

Leigh Anne O'Connor, a certified lactation consultant in New York, says these extra nipples can appear on or below an area named the Tail of Spence (after Scottish surgeon James Spence), which extends from the breast up into the armpit.

"Some people have nipples in their armpits, or even tiny breasts, and these nipples may leak," O'Connor tells Mental Floss. But an extra nipple is just an extra nipple—no cause for alarm or shame.

4. HERE'S WHY MEN HAVE NIPPLES.

Since the main purpose of nipples is breastfeeding babies, and male breasts do not lactate, it begs the question: Why do men have nipples? Scientists Stephen Jay Gould and Richard C. Lewontin tried to get to the bottom of this conundrum in a seminal paper in 1993.

All human embryos start out essentially the same. If the embryo has XY chromosomes, a gene on the Y chromosome called SRY will activate within a couple weeks of conception and begin to differentiate the embryo into one with male genitals.

However, it turns out that breast tissue begins to develop before SRY kicks in, and since nipples in men essentially do no harm, Gould and Lewontin argue, there has simply never been a good enough reason—evolutionarily speaking—to do away with them. They linger because they're benign. Or as Andrew M. Simons, a professor of biology at Carleton University in Ottawa, Ontario wrote in Scientific American, "The presence of nipples in male mammals is a genetic architectural by-product of nipples in females. So, why do men have nipples? Because females do."

5. THE WORLD'S STRONGEST NIPPLES BELONG TO THE GREAT NIPPULINI.

Who needs pecs when you have nipples like those of The Great Nippulini, a.k.a. Sage Werbock, a performer who makes a living demonstrating the mighty power of his nipples? Each nipple can lift 70 pounds, and he holds a Guinness record for the heaviest vehicle pulled by nipples for 20 meters (66 feet)—988.5 kilograms (2179.27 pounds). He has also lifted a variety of dumbbells, anvils, and bowling balls.

6. THEY'RE VERY SENSITIVE TO STIMULATION.

It's no secret that many people take sexual pleasure from nipple stimulation. However, Michael Reitano, an expert in sexual health and wellness at Roman Health in New York, brings up a study published in 2011 in which researchers set out to map the neurology of sexual stimulation in women. Through MRI imaging, they determined that "when [the nipple is] stimulated, the sensations travel to the same part of the brain that is stimulated when the clitoris, vagina, or cervix is stimulated," Reitano says. The study, published in the Journal of Sexual Medicine, also confirmed that it was possible for some women to have an orgasm by nipple stimulation alone.

While the same brain mapping has not yet been done on men, "there is every reason to believe that it has some capacity to function as a source of sexual pleasure for men as well," Reitano tells Mental Floss.

7. NIPPLES ARE AS UNIQUE AS FINGERPRINTS.

Nipples come in many colors, including pale pink, reddish-beige, brown, and black. Your own two nipples can even vary from each other, as can the areolae. "They also come in many different shapes," O'Connor says. "Some are more flat, while others can be quite bulbous. A person can have two nipples that look very different from each other. Asymmetry is normal."

8. A SPECIFIC KIND OF BREAST CANCER TARGETS THE NIPPLE.

While most forms of breast cancer affect the whole breast, Paget disease of the breast is a rare cancer that targets the skin and ducts of the nipple. "Most patients get a rash on the nipples that looks like a severe case of eczema. It is a cancer of breast epithelial (skin) cells," Chen says. Paget disease of the breast represents between 0.5 and 5 percent of all breast cancers.

9. AFTER MASTECTOMY, NIPPLE SENSATION CAN OCCASIONALLY BE RESTORED.

In breast cancer cases where mastectomy—removal of the breast—is necessary, it is sometimes possible to spare the nipple, allowing for a more realistic post-treatment reconstruction, though sensation is often lost. However, Chen says that in certain cases, "it is possible to restore sensation to the nipples with nerve repairs and nerve grafts when a woman undergoes natural tissue breast reconstruction. Sensory restoration to the nipple after mastectomy is very cutting edge, but if you find the right surgeon, it is possible."

10. NIPPLE STIMULATION CAN HELP INDUCE LABOR IN PREGNANT WOMEN.

When a woman is ready to give birth but the baby isn't, one piece of often-shared advice is to stimulate the mother's nipples to induce labor. A 2005 analysis of six trial studies found a significant decrease in the number of women who hadn't gone into labor after 72 hours. Just under 63 percent of the women who received stimulation were not in labor versus 94 percent who hadn't received it.

The mechanism isn't entirely clear, but breast stimulation causes the uterus to contract. It may also help release the hormone oxytocin, which can start contractions. Once the baby's born, the baby's suckling also has benefits for the mother. "When a newborn suckles, the increased oxytocin causes the uterus to contract [and shrink to its original size over the subsequent weeks] following birth," Reitano explains.

11. BREAST MILK HAS MULTIPLE WAYS TO EXIT THE NIPPLE.

If you've ever pumped your own breast milk or seen it done, you may have noticed that the milk doesn't just come out in a single stream. In a typical nipple, "There are between four and 20 outlets for the milk to come out—it can look like one stream or [coming from] various holes," O'Connor says.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios