CLOSE

Microsoft AI Achieves Highest Ms. Pac-Man Score Possible

The video game world recently witnessed Ms. Pac-Man history: For the first time, the game’s maximum score of 999,990 points has been reached. As Business Insider reports, the landmark wasn’t achieved by a competitive gamer but rather an AI algorithm owned by Microsoft.

After the AI start-up Maluuba was acquired by Microsoft in January, one of their first orders of business was developing a system capable of running through the Atari 2600 version of Ms. Pac-Man with more efficiency than any human player. To do this, they set up a program that rewarded the AI for completing different tasks like dodging ghosts and eating fruit. Each accomplishment was assigned a certain value, allowing the algorithm to prioritize problems as they arose. You can learn more about the strategy behind the win in the video below.

The game ended when Ms. Pac-Man racked up 999,990 points, the highest number the game can reach before resetting to zero. According to highscore.com, the previous Atari 2600 Ms. Pac-Man record of 266,330 belonged to a man from Brazil. Though it isn’t the most popular version of the title, researchers chose to play on the Atari 2600 game because the console has become standard for AI projects across the field. The maximum score on the original Ms. Pac-Man game, however, is still up for grabs.

[h/t Business Insider]

Original image
arrow
science
11-Year-Old Creates a Better Way to Test for Lead in Water
Original image

In the wake of the water crisis in Flint, Michigan, a Colorado middle schooler has invented a better way to test lead levels in water, as The Cut reports.

Gitanjali Rao, an 11-year-old seventh grader in Lone Tree, Colorado just won the 2017 Discovery Education 3M Young Scientist Challenge, taking home $25,000 for the water-quality testing device she invented, called Tethys.

Rao was inspired to create the device after watching Flint's water crisis unfold over the last few years. In 2014, after the city of Flint cut costs by switching water sources used for its tap water and failed to treat it properly, lead levels in the city's water skyrocketed. By 2015, researchers testing the water found that 40 percent of homes in the city had elevated lead levels in their water, and recommended the state declare Flint's water unsafe for drinking or cooking. In December of that year, the city declared a state of emergency. Researchers have found that the lead-poisoned water resulted in a "horrifyingly large" impact on fetal death rates as well as leading to a Legionnaires' disease outbreak that killed 12 people.

A close-up of the Tethys device

Rao's parents are engineers, and she watched them as they tried to test the lead in their own house, experiencing firsthand how complicated it could be. She spotted news of a cutting-edge technology for detecting hazardous substances on MIT's engineering department website (which she checks regularly just to see "if there's anything new," as ABC News reports) then set to work creating Tethys. The device works with carbon nanotube sensors to detect lead levels faster than other current techniques, sending the results to a smartphone app.

As one of 10 finalists for the Young Scientist Challenge, Rao spent the summer working with a 3M scientist to refine her device, then presented the prototype to a panel of judges from 3M and schools across the country.

The contamination crisis in Flint is still ongoing, and Rao's invention could have a significant impact. In March 2017, Flint officials cautioned that it could be as long as two more years until the city's tap water will be safe enough to drink without filtering. The state of Michigan now plans to replace water pipes leading to 18,000 households by 2020. Until then, residents using water filters could use a device like Tethys to make sure the water they're drinking is safe. Rao plans to put most of the $25,000 prize money back into her project with the hopes of making the device commercially available.

[h/t The Cut]

All images by Andy King, courtesy of the Discovery Education 3M Young Scientist Challenge.

Original image
iStock
arrow
technology
Google's AI Can Make Its Own AI Now
Original image
iStock

Artificial intelligence is advanced enough to do some pretty complicated things: read lips, mimic sounds, analyze photographs of food, and even design beer. Unfortunately, even people who have plenty of coding knowledge might not know how to create the kind of algorithm that can perform these tasks. Google wants to bring the ability to harness artificial intelligence to more people, though, and according to WIRED, it's doing that by teaching machine-learning software to make more machine-learning software.

The project is called AutoML, and it's designed to come up with better machine-learning software than humans can. As algorithms become more important in scientific research, healthcare, and other fields outside the direct scope of robotics and math, the number of people who could benefit from using AI has outstripped the number of people who actually know how to set up a useful machine-learning program. Though computers can do a lot, according to Google, human experts are still needed to do things like preprocess the data, set parameters, and analyze the results. These are tasks that even developers may not have experience in.

The idea behind AutoML is that people who aren't hyper-specialists in the machine-learning field will be able to use AutoML to create their own machine-learning algorithms, without having to do as much legwork. It can also limit the amount of menial labor developers have to do, since the software can do the work of training the resulting neural networks, which often involves a lot of trial and error, as WIRED writes.

Aside from giving robots the ability to turn around and make new robots—somewhere, a novelist is plotting out a dystopian sci-fi story around that idea—it could make machine learning more accessible for people who don't work at Google, too. Companies and academic researchers are already trying to deploy AI to calculate calories based on food photos, find the best way to teach kids, and identify health risks in medical patients. Making it easier to create sophisticated machine-learning programs could lead to even more uses.

[h/t WIRED]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios