CLOSE
Original image
iStock

13 Powerful Facts About Hurricanes

Original image
iStock

Hurricanes are a stunning, and dangerous, display of nature’s power. They’re some of the largest and most intense storms nature can produce. Today, we know more about these systems and have an easier time measuring and predicting them than ever before. There’s more than meets the eye when it comes to hurricanes.

1. THEY ARE ONLY "HURRICANES" AROUND NORTH AMERICA.

A tropical cyclone is a compact, low-pressure system fueled by thunderstorms that draw energy from the heat generated by warm ocean waters. These tropical cyclones acquire different names depending on how strong they are and where in the world they form. A mature tropical cyclone is called a hurricane in the Atlantic and eastern Pacific Oceans. What’s known as a hurricane in the Atlantic is called a typhoon near Asia and simply a cyclone everywhere else in the world.

2. HURRICANES COME IN ALL SHAPES AND SIZES.

Not all hurricanes are picture-perfect. Some storms can look so disorganized that it takes an expert eye and advanced technology to spot them. A full-fledged hurricane can be as small as a few dozen miles across or as large as one-half of the United States, as was the case with Typhoon Tip in the western Pacific Ocean in 1979. The smallest tropical cyclone on record was 2008’s Tropical Storm Marco, a tiny storm in the Gulf of Mexico that almost made it to hurricane strength. Marco’s strong winds only extended 12 miles from the eye of the storm—a distance smaller than the length of Manhattan.

3. THE GREATEST DANGER IS IN THE EYEWALL.

The spiraling bands of wind and rain that radiate from the center of a hurricane are what give these storms their distinctive buzzsaw shape. These bands can cause damage, flooding, and even tornadoes, but the worst part of a hurricane is the eyewall, or the tight group of thunderstorms that rage around the center of the storm. The most severe winds in a hurricane usually occupy a small part of the eyewall just to the right of the storm’s forward motion, an area known as the right-front quadrant. The worst damage is usually found where this part of the storm comes ashore.

4. IT’S WARM IN THE EYE.

The core of a hurricane is very warm—they are tropical, after all. The eye of a hurricane is formed by air rushing down from the upper levels of the atmosphere to fill the void left by the low air pressure at the surface. Air dries out and warms up as it rapidly descends through the eye toward the surface. This allows temperatures in the eye of a strong hurricane to exceed 80°F thousands of feet above the Earth's surface, where it’s typically much colder.

5. THE EYE TELLS YOU A STORM’S SECRETS.

Like humans, you can tell a lot about a hurricane by looking it in the eye. A ragged, asymmetrical eye means that the storm is struggling to strengthen. A smooth, round eye means that the storm is both stable and quite strong. A tiny eye—sometimes called a pinhole or pinpoint eye—is usually indicative of a very intense storm.

6. SOME STORMS EVEN HAVE TWO EYES.

An eye doesn’t last forever. Storms frequently encounter a process known as an “eyewall replacement cycle,” which is where a storm develops a new eyewall to replace the old one. A storm weakens during one of these cycles, but it can quickly grow even more intense than it originally was once the replacement cycle is completed. When Hurricane Matthew scraped the Florida coast in October 2016, the storm’s impacts were slightly less severe because the storm underwent an eyewall replacement cycle just as it made its closest approach to land.

7. THE WIND IS ONLY PART OF THE DANGER.

While strong winds get the most coverage on the news, wind isn’t always the most dangerous part of the storm. More than half of all deaths that result from a landfalling hurricane are due to the storm surge, or the sea water that gets pushed inland by a storm’s strong winds. Most storm surges are relatively small and only impact the immediate coast, but in a larger storm like Katrina or Sandy, the wind can push deep water so far inland that it completely submerges homes many miles from the coast.

8. PATRICIA WAS THE STRONGEST STORM EVER RECORDED.

The strongest hurricane ever directly recorded was Hurricane Patricia in 2015 [PDF]. The storm bubbled up off the western coast of Mexico in October 2015, unexpectedly strengthening into a monster category 5 as it approached land. A Hurricane Hunter aircraft measured maximum sustained winds of 210 mph on the morning of October 23, 2015, the strongest sustained winds ever recorded in a tropical cyclone in history, and the storm reached its record of 215 mph shortly after the plane left the storm. Patricia weakened somewhat over the next day before it made landfall with 150 mph winds in a sparsely populated region of Mexico.

9. CALIFORNIA RARELY SEES TROPICAL CYCLONES.

It can seem odd that California occupies hundreds of miles of coastline but always seems to evade the hurricane threat faced by the East Coast. California almost never sees tropical cyclones because the ocean is simply too cold to sustain a storm. Only a handful of tropical cyclones have ever reached California in recorded history—the worst hit San Diego in 1858. The San Diego Hurricane was an oddity that’s estimated to have reached category 1 intensity as it brushed the southern half of the Golden State.

10. HURRICANE HUNTERS FLY PLANES INTO STORMS …

Aside from satellite and radar imagery, it’s pretty hard to know exactly what a hurricane is doing unless it passes directly over a buoy or a ship. This is where the Hurricane Hunters come in, a brave group of scientists with the United States Air Force and NOAA who fly specially outfitted airplanes directly into the worst of a storm to measure its winds and report back their findings. This practice began during World War II and has become a mainstay of hurricane forecasting in the decades since.

11. … AND DROP SENSORS TO MEASURE WAVES.

The Hurricane Hunters assess the storm with all sorts of tools that measure temperature, pressure, wind, and moisture, and have weather radar onboard to give them a detailed view of the entire storm. They regularly release dropsondes to "read" the inside of the storm. Dropsondes are like weather balloons in reverse—instead of launching weather sensors from the ground into the sky, they drop them down through the sky to the ground. The Hurricane Hunters also have innovative sensors that measure waves and sea foam and use the data to accurately estimate how strong the winds are at the surface.

12. WE STARTED NAMING STORMS TO KEEP TRACK OF THEM.

Meteorologists in the United States officially started naming tropical storms and hurricanes in the 1950s to make it easier to keep track in forecasts and news reports. Since then, naming tropical cyclones has become a worldwide effort coordinated by the World Meteorological Organization, the United Nations agency responsible for maintaining meteorological standards. Today, the Atlantic Ocean and eastern Pacific Ocean each receive a list of alternating masculine and feminine names that are reused every six years.

13. NAMES ARE RETIRED IF THE STORM WAS ESPECIALLY DESTRUCTIVE.

If a storm is particularly destructive or deadly, the WMO will “retire” the name from official lists so it’s never used again out of respect for the families of the storm’s victims and survivors. When a name is retired, another name starting with the same letter takes its place. More than 80 names have been retired from the Atlantic Ocean’s list of names since 1954. The names Matthew and Otto were retired after the 2016 hurricane season, and they will be replaced with Martin and Owen when the list is reused in 2022.

arrow
Weather Watch
3 Ways We Can (Kind of) Control the Weather, and 5 Ways We Can't

Humans have the incredible ability to control the world around us. We can move mountains and land robots on other planets. We can keep each other alive longer than ever before and even bring entire species back from the brink of extinction. But despite all of our leaps forward, we're still unable to control the weather, a tremendous force that affects every human being on this planet. Still, humans have come up with some pretty crafty ways of influencing the weather—in small doses.

1. WE CAN MAKE IT RAIN … SOMEWHAT.

The desire to control weather has been a mainstay of imagination since, well, the beginning of imagination. The fortunes of entire societies can hinge on flood or drought. We have strong motivation to want to create a rainstorm in one spot or moderate snowfall in another. But the greatest success we've ever had is a technique that can (maybe) encourage a tiny bit of rain to form over a tiny area.

Cloud seeding is a process through which fine particles like silver iodide are released into a cloud in order to encourage the formation of rain or snow. These particulates serve as a nucleus around which water vapor can condense and turn into a raindrop or a snowflake. This is most commonly done with small airplanes, but it can also be accomplished by launching tiny rockets or flares from the ground.

In theory, the practice of cloud seeding could have innumerable uses around the world, including crop maintenance, providing drinking water, and even possibly weakening severe thunderstorms or hurricanes. There's only one problem: It doesn't work all that well.

The effectiveness of cloud seeding is a hot topic of debate among scientists, but most studies have either found negligible impacts on precipitation, or the researchers were unable to determine the exact impact of cloud seeding. Cloud seeding is a great concept if you want to help one cloud produce a little extra rain or snow just to say you can do it, but it's not the way to go if you're desperate and want to trigger a deluge. This process requires the pre-existing presence of clouds, so even if the technology improves in the future, it's not a viable solution for drought-stricken areas that haven't seen meaningful clouds in weeks.

2. WE CAN DEFINITELY ATTRACT LIGHTNING USING ROCKETS.

Lightning safety is one of the things you learn from a very young age. "When thunder roars, go indoors," as the motto goes. We learn to stay away from open areas and water during thunderstorms. But what if you wanted to attract lightning? It's surprisingly easy to do if you have the right equipment and really, really want to encounter some of nature's fury.

Scientists who want to study lightning can bring it right to their doorstep by using specially designed rockets attached to conductive wires that lead to the ground below. When a thunderstorm blows over the observation station, operators can launch these rockets up into the clouds to trigger a lightning strike that follows the wire right down to the ground where the rocket was launched. Voila, instant lightning. Just add rocket fuel.

3. WE CAN CREATE CLOUDS AND HEAT—EVEN WHEN WE DON'T MEAN TO.

Most of the ways in which we control—or, more accurately, influence—the weather is through indirect human actions—often unintentional. "Whoops, the nuclear power plant just caused a snowstorm" isn't as crazy as it sounds. Steam stacks can and do produce clouds and updrafts with enough intensity to create rain or snow immediately downwind. The very presence of cities can generate microclimates with warmer temperatures and heavier rain. And there's also climate change, the process in which our accumulated actions over a long period of time are influencing the very climate itself.

BUT WE CAN'T DO THE FIVE FOLLOWING THINGS.

Despite our limited ability to influence a few aspects of weather over small areas, there are some rather colorful conspiracy theories about whether or not governments and organizations are telling the whole truth about how much we can accomplish with today's technology. There are folks who insist that the trails of condensed water vapor, or "contrails," left behind jet aircraft are really chemicals being sprayed for sinister purposes. (They're not.) There are theories that a high-frequency, high-power array of antennas deep in the Alaskan wilderness can control every weather disaster in the world. (It doesn't.) There are even folks who insist that Doppler weather radar carries enough energy to "zap" storms into existence on demand. (Dr. Evil wishes.)

There are also some bizarre and unworkable theories that are offered in good faith. A meteorologist a few years ago opined on whether building an excessively tall wall across middle America could disrupt weather patterns that could lead to tornado activity. And every year the National Hurricane Center is peppered with questions about whether or not detonating nuclear bombs in a hurricane would disrupt the storm's structure. Unfortunately, while pseudoscience offers up great theories to test in the movies, when it comes to weather, we're still not in control.

Original image
iStock
arrow
Weather Watch
NASA Figures Out Why When It Rains, It (Sometimes) Drizzles
Original image
iStock

What’s the difference between drizzle and rain? It has to do with updrafts, according to new research by NASA scientists into the previously unexplained phenomenon of why drizzle occurs where it does.

The answer, published in the Quarterly Journal of the Royal Meteorological Society, could help improve how weather and climate models treat rainfall, making predictions more accurate.

Previously, climate researchers thought that drizzle could be explained by the presence of aerosols in the atmosphere. The microscopic particles are present in greater quantities over land than over the ocean, and by that logic, there should be more drizzle over land than over the ocean. But that's not the case, as Hanii Takahashi and her colleagues at the Jet Propulsion Laboratory found. Instead, whether or not rain becomes full droplets or stays as a fine drizzle depends on updrafts—a warm current of air that rises from the ground.

Stronger updrafts keep drizzle droplets (which are four times smaller than a raindrop) floating inside a cloud longer, allowing them to grow into full-sized rain drops that fall to the ground in the splatters we all know and love. In weaker updrafts, though, the precipitation falls before the drops form, as that light drizzle. That explains why it drizzles more over the ocean than over land—because updrafts are weaker over the ocean. A low-lying cloud over the ocean is more likely to produce drizzle than a low-lying cloud over land, which will probably produce rain.

This could have an impact on climate modeling as well as short-term weather forecasts. Current models make it difficult to model future surface temperatures of the Earth while still maintaining accurate projections about the amount of precipitation. Right now, most models that project realistic surface temperatures predict an unrealistic amount of drizzle in the future, according to a NASA statement. This finding could bring those predictions back down to a more realistic level.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios