How Your Brain Fights Sleep Even When You're Exhausted


Maybe you’ve got an exam in the morning, or there’s just one more episode left in this season. Whatever the reason, tonight you ignore your body’s demands and stay up instead. It’s an impressive feat, if you think about it—sleep is essential—and now scientists may be closer to understanding how we do it. They published a report on their findings in the journal Neuron.

There’s a little section of your brainstem called the dorsal raphe nucleus (DRN). This region is responsible for making serotonin and other brain chemicals.

Lead researcher Viviana Gradinaru of Caltech says previous studies have also suggested that the dorsal raphe nucleus plays a role in helping keep us awake.

"People who have damage in this part of their brain have been shown to experience excessive daytime sleepiness,” she said in a statement, “but there was not a good understanding of the exact role of these neurons in the sleep/wake cycle and whether they react to internal or external stimuli to influence arousal."

Within the dorsal raphe nucleus lies a little-understood group of dopamine cells called the dorsal raphe nucleus neurons (DRNDA).

Color image of dorsal raphe nucleus neurons
Dorsal raphe nucleus neurons responding to light (green) and chemical (red) signals.
Viviana Gradinaru

Gradinaru and her colleagues wanted to know if voluntary wakefulness had anything to do with dopamine activity within these cells. They started by studying mouse brains, which are similar to our own in many ways.

The researchers monitored the rodents’ DRNDA action while the mice were fed, met new potential mates, or experienced sudden unpleasant sensations—all experiences for which the mice would want or need to stay awake. Throughout the experiences, the mice’s DRNDA cells kept very busy, sending bursts of dopamine to other parts of the brain.

Next, the scientists tracked DRNDA cell activity as the mice slept and woke. They found that the cells seemed to sleep when the mice did, and revved up when the mice got up.

So far, the researchers knew that the sleeping mouse/sleeping neurons and waking mouse/waking neurons pairs existed, but they couldn’t tell if the neurons caused the waking or vice versa.

To find out, they engineered DRNDA cells that could be switched on and off by light. They then bred mice with these light-sensitive cells and let them sleep. As the mice snoozed, the researchers switched on the lights and their DRNDA cells using a technique called optogenetics. Sure enough, the mice woke up.

Shutting off DRNDA cells had the opposite effect: Mice with no DRNDA activity couldn’t keep their eyes open, even when faced with danger, loud noises, or the possibility of mating.

The authors note that their experiments included only mice, and that it’s too soon to draw conclusions about what this might mean for people.

“Further work is necessary to establish causation in humans,” Gradinaru said, “and to test the potential of the DRNDA as a therapeutic target for insomnia or oversleeping, and for sleep disturbances that accompany other psychiatric disorders such as depression, bipolar disorder, and schizophrenia."

Stones, Bones, and Wrecks
Buckingham Palace Was Built With Jurassic Fossils, Scientists Find

The UK's Buckingham Palace is a vestige from another era, and not just because it was built in the early 18th century. According to a new study, the limestone used to construct it is filled with the fossilized remains of microbes from the Jurassic period of 200 million years ago, as The Telegraph reports.

The palace is made of oolitic limestone, which consists of individual balls of carbonate sediment called ooids. The material is strong but lightweight, and is found worldwide. Jurassic oolite has been used to construct numerous famous buildings, from those in the British city of Bath to the Empire State Building and the Pentagon.

A new study from Australian National University published in Scientific Reports found that the spherical ooids in Buckingham Palace's walls are made up of layers and layers of mineralized microbes. Inspired by a mathematical model from the 1970s for predicting the growth of brain tumors, the researchers created a model that explains how ooids are created and predicts the factors that limit their ultimate size.

A hand holding a chunk of oolite limestone
Australian National University

They found that the mineralization of the microbes forms the central core of the ooid, and the layers of sediment that gather around that core feed those microbes until the nutrients can no longer reach the core from the outermost layer.

This contrasts with previous research on how ooids form, which hypothesized that they are the result of sediment gathered from rolling on the ocean floor. It also reshapes how we think about the buildings made out of oolitic limestone from this period. Next time you look up at the Empire State Building or Buckingham Palace, thank the ancient microbes.

[h/t The Telegraph]

Anne Dirkse, Flickr // CC BY-SA 2.0
10 Astonishing Things You Should Know About the Milky Way
Anne Dirkse, Flickr // CC BY-SA 2.0
Anne Dirkse, Flickr // CC BY-SA 2.0

Our little star and the tiny planets that circle it are part of a galaxy called the Milky Way. Its name comes from the Greek galaxias kyklos ("milky circle") and Latin via lactea ("milky road"). Find a remote area in a national park, miles from the nearest street light, and you'll see exactly why the name makes sense and what all the fuss is about. Above is not a sky of black, but a luminous sea of whites, blues, greens, and tans. Here are a few things you might not know about our spiraling home in the universe.


The Milky Way galaxy is about 1,000,000,000,000,000,000 kilometers (about 621,371,000,000,000,000 miles) across. Even traveling at the speed of light, it would still take you well over 100,000 years to go from one end of the galaxy to the other. So it's big. Not quite as big as space itself, which is "vastly, hugely, mind-bogglingly big," as Douglas Adams wrote, but respectably large. And that's just one galaxy. Consider how many galaxies there are in the universe: One recent estimate says 2 trillion.


artist's illustration of the milky way galaxy and its center
An artist's concept of the Milky Way and the supermassive black hole Sagittarius A* at its core.
ESA–C. Carreau

The Milky Way is a barred spiral galaxy composed of an estimated 300 billion stars, along with dust, gas, and celestial phenomena such as nebulae, all of which orbits around a hub of sorts called the Galactic Center, with a supermassive black hole called Sagittarius A* (pronounced "A-star") at its core. The bar refers to the characteristic arrangement of stars at the interior of the galaxy, with interstellar gas essentially being channeled inward to feed an interstellar nursery. There are four spiral arms of the galaxy, with the Sun residing on the inner part of a minor arm called Orion. We're located in the boondocks of the Milky Way, but that is OK. There is definitely life here, but everywhere else is a question mark. For all we know, this might be the galactic Paris.


If you looked at all the spiral galaxies in the local volume of the universe, the Milky Way wouldn't stand out as being much different than any other. "As galaxies go, the Milky Way is pretty ordinary for its type," Steve Majewski, a professor of astronomy at the University of Virginia and the principal investigator on the Apache Point Observatory Galactic Evolution Experiment (APOGEE), tells Mental Floss. "It's got a pretty regular form. It's got its usual complement of star clusters around it. It's got a supermassive black hole in the center, which most galaxies seem to indicate they have. From that point of view, the Milky Way is a pretty run-of-the-mill spiral galaxy."


On the other hand, he tells Mental Floss, spiral galaxies in general tend to be larger than most other types of galaxies. "If you did a census of all the galaxies in the universe, the Milky Way would seem rather unusual because it is very big, our type being one of the biggest kinds of galaxies that there are in the universe." From a human perspective, the most important thing about the Milky Way is that it definitely managed to produce life. If they exist, the creatures in Andromeda, the galaxy next door (see #9), probably feel the same way about their own.


John McSporran, Flickr // CC BY 2.0

We have a very close-up view of the phenomena and forces at work in the Milky Way because we live inside of it, but that internal perspective places astronomers at a disadvantage when it comes to determining a galactic pattern. "We have a nice view of the Andromeda galaxy because we can see the whole thing laid out in front of us," Majewski says. "We don't have that opportunity in the Milky Way."

To figure out its structure, astronomers have to think like band members during a football halftime show. Though spectators in the stands can easily see the letters and shapes being made on the field by the marchers, the band can't see the shapes they are making. Rather, they can only work together in some coordinated way, moving to make these patterns and motions on the field. So it is with telescopes and stars.


Interstellar dust further stymies astronomers. "That dust blocks our light, our view of the more distant parts of the Milky Way," Majewski says. "There are areas of the galaxy that are relatively obscured from view because they are behind huge columns of dust that we can't see through in the optical wavelengths that our eyes work in." To ameliorate this problem, astronomers sometimes work in longer wavelengths such as radio or infrared, which lessen the effects of the dust.


Astronomers can make pretty reasonable estimates of the mass of the galaxy by the amount of light they can see. They can count the galaxy's stars and calculate how much those stars should weigh. They can account for all the dust in the galaxy and all of the gas. And when they tally the mass of everything they can see, they find that it is far short of what is needed to account for the gravity that causes the Milky Way to spin.

In short, our Sun is about two-thirds of the way from the center of the galaxy, and astronomers know that it goes around the galaxy at about 144 miles per second. "If you calculate it based on the amount of matter interior to the orbit of the Sun, how fast we should be going around, the number you should get is around 150 or 160 kilometers [93–99 miles] per second," Majewski says. "Further out, the stars are rotating even faster than they should if you just account for what we call luminous matter. Clearly there is some other substance in the Milky Way exerting a gravitational effect. We call it dark matter."


Dark matter is a big problem in galactic studies. "In the Milky Way, we study it by looking at the orbits of stars and star clusters and satellite galaxies, and then trying to figure out how much mass do we need interior to the orbit of that thing to get it moving at the speed that we can measure," Majewski says. "And so by doing this kind of analysis for objects at different radii across the galaxy, we actually have a fairly good idea of the distribution of the dark matter in the Milky Way—and yet we still have no idea what the dark matter is."


andromeda galaxy
The Andromeda galaxy
ESA/Hubble & NASA

Sometime in the next 4 or 5 billion years, the Milky Way and Andromeda galaxies will smash into each other. The two galaxies are about the same size and have about the same number of stars, but there is no cause for alarm. "Even though there are 300 billion stars in our galaxy and a comparable number, or maybe more, in Andromeda, when they collide together, not a single star is expected to hit another star. The space between stars is that vast," Majewski says.


There are countless spacecraft and telescopes studying the Milky Way. Most famous is the Hubble Space Telescope, while other space telescopes such as Chandra, Spitzer, and Kepler are also returning data to help astronomers unlock the mysteries of our swirling patch of stars. The next landmark telescope in development is NASA's James Webb Space Telescope. It should finally launch in 2019. Meanwhile, such ambitious projects as APOGEE are working out the structure and evolution of our spiral home by doing "galactic archaeology." APOGEE is a survey of the Milky Way using spectroscopy, measuring the chemical compositions of hundreds of thousands of stars across the galaxy in great detail. The properties of stars around us are fossil evidence of their formation, which, when combined with their ages, helps astronomers understand the timeline and evolution of the galaxy we call home. 


More from mental floss studios