CLOSE
Original image
iStock

Learning to Read as an Adult Changes Deep Regions of the Brain

Original image
iStock

In the evolutionary history of humans, reading and writing are relatively new functions. As a result, in order to read written language, human brains have had to recruit and adapt parts of the visual system to interface with language centers. This is a process researchers have long believed occurred primarily in the cerebral cortex, the outer layer of the brain. But in a new study where illiterate people in their thirties were trained to read over six months, researchers have discovered that reading actually activates much deeper brain structures as well, opening doors to a better understanding of how we learn, and possible new interventions for dyslexia. Their results were recently published in the journal Science Advances.

In order to learn to read, "a kind of recycling process has to take place in the brain," Falk Huettig, one of the collaborating researchers at Max Planck Institute for Human Cognitive and Brain Sciences, tells Mental Floss by email. "Areas evolved for the recognition of complex objects, such as faces, become engaged in translating letters into language.”

To study this process in the brain, researchers selected participants from India, where the literacy rate is about 63 percent, a rate influenced by poverty, which limits educational access, especially for girls and women. Most of the participants in this study were women in their thirties who came into the study unable to read a single word.

They divided the participants into a group that received reading training intervention and a control group that was not trained. Both groups underwent functional magnetic resonance imaging (fMRI) brain scans before and after the six-month study. Some participants were excluded due to incomplete scanning sessions, leaving a total of 30 participants in the final analysis.

They were taught to read Devanagari, the script upon which Hindi and some other languages of South Asia are based. It's an alpha-syllabic script composed of complex characters that describe whole syllables or words.

The instructor was a professional teacher who followed the locally established method of reading instruction. During the first month of instruction, the participants first were taught to read and write 46 primary Devanagari characters simultaneously. After learning the letters and reading single words, they were taught two-syllable words. In all, they studied approximately 200 words in the first month.

In the second month, the participants were then taught to read and write simple sentences, and in the third month, they learned more complex, three-syllable words. Finally, in the second half of the program, participants learned some basic grammar rules. "For example, the participants learned about the differences between nouns, pronouns, verbs, proverbs, and adjectives, and also about basic rules of tense and gender," Huettig says.

Within six months, participants who could read between zero and eight words even before the training had reached a first-grade level of reading, according to Huettig. "This process was quite remarkable," Huettig says. "Learning to read is quite a complex skill, as arbitrary script characters must be mapped onto the corresponding units of spoken language."

When the researchers looked at the brain scans taken before and after the six-month training, Huettig says they expected to simply replicate previous findings: that changes are limited to the cortex, which is known to adapt quickly to new challenges.

What they didn't expect was to see changes in deeper parts of the brain. "We observed that the learning process leads to a reorganization that extends to deep brain structures in the thalamus and the brainstem." More specifically, learning to read had an impact on a part of the brainstem called the superior colliculus as well as the pulivinar, located in the thalamus, which "adapt the timing of their activity patterns to those of the visual cortex," Heuttig explains.

These deep brain structures help the visual cortex filter important information from the flood of visual input—even before we consciously perceive it. "It seems that these brain systems increasingly fine-tune their communication as learners become more and more proficient in reading," he says.

In essence, the more these participants read, the better they became at it. The research also revealed that the adult brain is more adaptable than previously understood. "Even learning to read in your thirties profoundly transforms brain networks," Huettig says. "The adult brain is remarkably flexible to adapt to new challenges."

Even more promising, these results shed new light on a possible cause of dyslexia, a language-processing disorder, which researchers have long attributed to dysfunctions of the thalamus. Since just a few months of reading training can modify the thalamus, Huettig says, "it could also be that affected people show different brain activity in the thalamus, just because their visual system is less well-trained than that of experienced readers."

Huettig feels that the social implications of this kind of research are huge, both for people effected by dyslexia as well as the hundreds of millions of adults who are completely or functionally illiterate around the world. Huettig says the new findings could help "put together literacy programs that have the best chance of succeeding to help these people."

Original image
iStock
arrow
science
Why a Howling Wind Sounds So Spooky, According to Science
Original image
iStock

Halloween is swiftly approaching, meaning you'll likely soon hear creepy soundtracks—replete with screams, clanking chains, and howling winds—blaring from haunted houses and home displays. While the sound of human suffering is frightful for obvious reasons, what is it, exactly, about a brisk fall gust that sends shivers up our spines? In horror movie scenes and ghost stories, these spooky gales are always presented as blowing through dead trees. Do bare branches actually make the natural wailing noises louder, or is this detail added simply for atmospheric purposes?

As the SciShow's Hank Green explains in the video below, wind howls because it curves around obstacles like trees or buildings. When fast-moving air goes around, say, a tree, it splits up as it whips past, before coming back together on the other side. Due to factors such as natural randomness, air speed, and the tree's surface, one side's wind is going to be slightly stronger when the two currents rejoin, pushing the other side's gust out of the way. The two continue to interact back-and-forth in what could be likened to an invisible wrestling match, as high-pressure airwaves and whirlpools mix together and vibrate the air. If the wind is fast enough, this phenomenon will produce the eerie noise we've all come to recognize in horror films.

Leafy trees "will absorb some of the vibrations in the air and dull the sound, but without leaves—like if it's the middle of the winter or the entire forest is dead—the howling will travel a lot farther," Green explains. That's why a dead forest on a windy night sounds so much like the undead.

Learn more by watching SciShow's video below.

Original image
AFP/Stringer/Getty Images
arrow
Space
SpaceX's Landing Blooper Reel Shows That Even Rocket Scientists Make Mistakes
Original image
SpaceX's Falcon 9 rocket launches.
AFP/Stringer/Getty Images

On March 30, 2017, SpaceX did something no space program had done before: They relaunched an orbital class rocket from Earth that had successfully achieved lift-off just a year earlier. It wasn't the first time Elon Musk's company broke new ground: In December 2015, it nailed the landing on a reusable rocket—the first time that had been done—and five months later landed a rocket on a droneship in the middle of the ocean, which was also unprecedented. These feats marked significant moments in the history of space travel, but they were just a few of the steps in the long, messy journey to achieve them. In SpaceX's new blooper reel, spotted by Ars Technica, you can see just some of the many failures the company has had along the way.

The video demonstrates that failure is an important part of the scientific process. Of course when the science you're working in deals with launching and landing rockets, failure can be a lot more dramatic than it is in a lab. SpaceX has filmed their rockets blowing up in the air, disintegrating in the ocean, and smashing against landing pads, often because of something small like a radar glitch or lack of propellant.

While explosions—or "rapid unscheduled disassemblies," as the video calls them—are never ideal, some are preferable to others. The Falcon 9 explosion that shook buildings for miles last year, for instance, ended up destroying the $200 million Facebook satellite onboard. But even costly hiccups such as that one are important to future successes. As Musk once said, "If things are not failing, you are not innovating enough."

You can watch the fiery compilation below.

[h/t Ars Technica]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios