CLOSE
Original image
iStock

Learning to Read as an Adult Changes Deep Regions of the Brain

Original image
iStock

In the evolutionary history of humans, reading and writing are relatively new functions. As a result, in order to read written language, human brains have had to recruit and adapt parts of the visual system to interface with language centers. This is a process researchers have long believed occurred primarily in the cerebral cortex, the outer layer of the brain. But in a new study where illiterate people in their thirties were trained to read over six months, researchers have discovered that reading actually activates much deeper brain structures as well, opening doors to a better understanding of how we learn, and possible new interventions for dyslexia. Their results were recently published in the journal Science Advances.

In order to learn to read, "a kind of recycling process has to take place in the brain," Falk Huettig, one of the collaborating researchers at Max Planck Institute for Human Cognitive and Brain Sciences, tells Mental Floss by email. "Areas evolved for the recognition of complex objects, such as faces, become engaged in translating letters into language.”

To study this process in the brain, researchers selected participants from India, where the literacy rate is about 63 percent, a rate influenced by poverty, which limits educational access, especially for girls and women. Most of the participants in this study were women in their thirties who came into the study unable to read a single word.

They divided the participants into a group that received reading training intervention and a control group that was not trained. Both groups underwent functional magnetic resonance imaging (fMRI) brain scans before and after the six-month study. Some participants were excluded due to incomplete scanning sessions, leaving a total of 30 participants in the final analysis.

They were taught to read Devanagari, the script upon which Hindi and some other languages of South Asia are based. It's an alpha-syllabic script composed of complex characters that describe whole syllables or words.

The instructor was a professional teacher who followed the locally established method of reading instruction. During the first month of instruction, the participants first were taught to read and write 46 primary Devanagari characters simultaneously. After learning the letters and reading single words, they were taught two-syllable words. In all, they studied approximately 200 words in the first month.

In the second month, the participants were then taught to read and write simple sentences, and in the third month, they learned more complex, three-syllable words. Finally, in the second half of the program, participants learned some basic grammar rules. "For example, the participants learned about the differences between nouns, pronouns, verbs, proverbs, and adjectives, and also about basic rules of tense and gender," Huettig says.

Within six months, participants who could read between zero and eight words even before the training had reached a first-grade level of reading, according to Huettig. "This process was quite remarkable," Huettig says. "Learning to read is quite a complex skill, as arbitrary script characters must be mapped onto the corresponding units of spoken language."

When the researchers looked at the brain scans taken before and after the six-month training, Huettig says they expected to simply replicate previous findings: that changes are limited to the cortex, which is known to adapt quickly to new challenges.

What they didn't expect was to see changes in deeper parts of the brain. "We observed that the learning process leads to a reorganization that extends to deep brain structures in the thalamus and the brainstem." More specifically, learning to read had an impact on a part of the brainstem called the superior colliculus as well as the pulivinar, located in the thalamus, which "adapt the timing of their activity patterns to those of the visual cortex," Heuttig explains.

These deep brain structures help the visual cortex filter important information from the flood of visual input—even before we consciously perceive it. "It seems that these brain systems increasingly fine-tune their communication as learners become more and more proficient in reading," he says.

In essence, the more these participants read, the better they became at it. The research also revealed that the adult brain is more adaptable than previously understood. "Even learning to read in your thirties profoundly transforms brain networks," Huettig says. "The adult brain is remarkably flexible to adapt to new challenges."

Even more promising, these results shed new light on a possible cause of dyslexia, a language-processing disorder, which researchers have long attributed to dysfunctions of the thalamus. Since just a few months of reading training can modify the thalamus, Huettig says, "it could also be that affected people show different brain activity in the thalamus, just because their visual system is less well-trained than that of experienced readers."

Huettig feels that the social implications of this kind of research are huge, both for people effected by dyslexia as well as the hundreds of millions of adults who are completely or functionally illiterate around the world. Huettig says the new findings could help "put together literacy programs that have the best chance of succeeding to help these people."

Original image
Brown University Library, Wikipedia/Public Domain
arrow
This Just In
Lincoln’s Famous Letter of Condolence to a Grieving Mother Was Likely Penned by His Secretary
Original image
Brown University Library, Wikipedia/Public Domain

Despite his lack of formal schooling, Abraham Lincoln was a famously eloquent writer. One of his most renowned compositions is the so-called “Bixby letter,” a short yet poignant missive the president sent a widow in Boston who was believed to have lost five sons during the Civil War. But as Newsweek reports, new research published in the journal Digital Scholarship in the Humanities [PDF] suggests that Lincoln’s private secretary and assistant, John Hay, actually composed the dispatch.

The letter to Lydia Bixby was written in November 1864 at the request of William Shouler, the adjutant general of Massachusetts, and state governor John Albion Andrew. “I feel how weak and fruitless must be any word of mine which should attempt to beguile you from the grief of a loss so overwhelming,” it read. “But I cannot refrain from tendering you the consolation that may be found in the thanks of the Republic they died to save.”

Unknown to Lincoln, Bixby had actually only lost two sons in battle; the others had deserted the army, were honorably discharged, or died a prisoner of war. Nevertheless, word of the compassionate presidential gesture spread when the Boston Evening Transcript reprinted a copy of the 139-word letter for all to read.

Nobody quite knows what happened to Bixby’s original letter—some say she was a Confederate sympathizer and immediately burnt it—but for years, scholars debated whether Hay was its true author.

During Hay’s lifetime, the former secretary-turned-statesman had reportedly told several people in confidence that he—not Lincoln—had written the renowned composition, TIME reports. The rumor spread after Hay's death, but some experts interpreted the admission to mean that Hay had transcribed the letter, or had copied it from a draft.

To answer the question once and for all, a team of forensic linguists in England used a text analysis technique called n-gram tracing, which identifies the frequency of linguistic sequences in a short piece of writing to determine its true author. They tested 500 texts by Hay and 500 by Lincoln before analyzing the Bixby letter, the researchers explained in a statement quoted by Newsweek.

“Nearly 90 percent of the time, the method identified Hay as the author of the letter, with the analysis being inconclusive in the rest of the cases,” the linguists concluded.

According to Atlas Obscura, the team plans to present its findings at the International Corpus Linguistics Conference, which will take place at England’s University of Birmingham from Monday, July 24 to Friday, July 28.

[h/t Newsweek]

Original image
arrow
science
These Deep-Sea Worms Could Live More Than a Thousand Years

Plunge below the sparkling surface of the Gulf of Mexico, head down into the depths, and there you'll find the ancient ones, growing in clusters of drab tubes like piles of construction equipment. Scientists writing in the journal The Science of Nature report that some of these worms could be more than 1000 years old.

When it comes to marine organisms, the deeper you go, the slower and older life gets. Biologists have found an octopus that guarded her eggs for four and a half years. They've seen clams born during the Ming dynasty and sharks older than the United States. They've seen communities of coral that have been around for millennia.

Previous studies have shown that some species of tube worm can live to be 250 years old. To find out if the same was true for other species—in this case, the Gulf of Mexico's Escarpia laminata—researchers spent years watching them grow. They used a long-lasting dye called Acid Blue to mark six clusters of worms, then let them to go about their wormy business. A year later, they collected all 356 blue-stained tubes and brought them back to the lab to measure their growth.

By calculating the speed of the worms' growth and comparing it to the size of the largest individuals, the scientists could devise a pretty good estimate of the oldest worms' age.

And boy, are they old. The researchers' worm-growth simulation suggested that the most ancient individuals could be more than 9000 years old. This seems incredible, even for tough old tube worms, so the scientists calculated a more conservative maximum age: a mere 1000 years.

A millennium-long lifespan is an extreme and not the average, the paper authors note. "There may indeed be large E. laminata over 1000 years old in nature, but given our research, we are more confident reporting a life span of at least 250 to 300 years," lead author Alanna Durkin of Temple University told New Scientist.

Still, Durkin says, "E. laminata is pushing the bounds of what we thought was possible for longevity."

She's excited by the prospect of finding older creatures yet.

"It's possible that new record-breaking life spans will be discovered in the deep sea,” she says, “since we are finding new species and new habitats almost every time we send down a submersible.”

 

[h/t New Scientist]

SECTIONS

More from mental floss studios