CLOSE
iStock
iStock

Learning to Read as an Adult Changes Deep Regions of the Brain

iStock
iStock

In the evolutionary history of humans, reading and writing are relatively new functions. As a result, in order to read written language, human brains have had to recruit and adapt parts of the visual system to interface with language centers. This is a process researchers have long believed occurred primarily in the cerebral cortex, the outer layer of the brain. But in a new study where illiterate people in their thirties were trained to read over six months, researchers have discovered that reading actually activates much deeper brain structures as well, opening doors to a better understanding of how we learn, and possible new interventions for dyslexia. Their results were recently published in the journal Science Advances.

In order to learn to read, "a kind of recycling process has to take place in the brain," Falk Huettig, one of the collaborating researchers at Max Planck Institute for Human Cognitive and Brain Sciences, tells Mental Floss by email. "Areas evolved for the recognition of complex objects, such as faces, become engaged in translating letters into language.”

To study this process in the brain, researchers selected participants from India, where the literacy rate is about 63 percent, a rate influenced by poverty, which limits educational access, especially for girls and women. Most of the participants in this study were women in their thirties who came into the study unable to read a single word.

They divided the participants into a group that received reading training intervention and a control group that was not trained. Both groups underwent functional magnetic resonance imaging (fMRI) brain scans before and after the six-month study. Some participants were excluded due to incomplete scanning sessions, leaving a total of 30 participants in the final analysis.

They were taught to read Devanagari, the script upon which Hindi and some other languages of South Asia are based. It's an alpha-syllabic script composed of complex characters that describe whole syllables or words.

The instructor was a professional teacher who followed the locally established method of reading instruction. During the first month of instruction, the participants first were taught to read and write 46 primary Devanagari characters simultaneously. After learning the letters and reading single words, they were taught two-syllable words. In all, they studied approximately 200 words in the first month.

In the second month, the participants were then taught to read and write simple sentences, and in the third month, they learned more complex, three-syllable words. Finally, in the second half of the program, participants learned some basic grammar rules. "For example, the participants learned about the differences between nouns, pronouns, verbs, proverbs, and adjectives, and also about basic rules of tense and gender," Huettig says.

Within six months, participants who could read between zero and eight words even before the training had reached a first-grade level of reading, according to Huettig. "This process was quite remarkable," Huettig says. "Learning to read is quite a complex skill, as arbitrary script characters must be mapped onto the corresponding units of spoken language."

When the researchers looked at the brain scans taken before and after the six-month training, Huettig says they expected to simply replicate previous findings: that changes are limited to the cortex, which is known to adapt quickly to new challenges.

What they didn't expect was to see changes in deeper parts of the brain. "We observed that the learning process leads to a reorganization that extends to deep brain structures in the thalamus and the brainstem." More specifically, learning to read had an impact on a part of the brainstem called the superior colliculus as well as the pulivinar, located in the thalamus, which "adapt the timing of their activity patterns to those of the visual cortex," Heuttig explains.

These deep brain structures help the visual cortex filter important information from the flood of visual input—even before we consciously perceive it. "It seems that these brain systems increasingly fine-tune their communication as learners become more and more proficient in reading," he says.

In essence, the more these participants read, the better they became at it. The research also revealed that the adult brain is more adaptable than previously understood. "Even learning to read in your thirties profoundly transforms brain networks," Huettig says. "The adult brain is remarkably flexible to adapt to new challenges."

Even more promising, these results shed new light on a possible cause of dyslexia, a language-processing disorder, which researchers have long attributed to dysfunctions of the thalamus. Since just a few months of reading training can modify the thalamus, Huettig says, "it could also be that affected people show different brain activity in the thalamus, just because their visual system is less well-trained than that of experienced readers."

Huettig feels that the social implications of this kind of research are huge, both for people effected by dyslexia as well as the hundreds of millions of adults who are completely or functionally illiterate around the world. Huettig says the new findings could help "put together literacy programs that have the best chance of succeeding to help these people."

nextArticle.image_alt|e
iStock
arrow
science
There May Be an Ancient Reason Why Your Dog Eats Poop
iStock
iStock

Dogs aren't known for their picky taste in food, but some pups go beyond the normal trash hunting and start rooting around in poop, whether it be their own or a friend's. Just why dogs exhibit this behavior is a scientific mystery. Only some dogs do it, and researchers aren't quite sure where the impulse comes from. But if your dog is a poop eater, it's nearly impossible to steer them away from their favorite feces.

A new study in the journal Veterinary Medicine and Science, spotted by The Washington Post, presents a new theory for what scientists call "canine conspecific coprophagy," or dogs eating dog poop.

In online surveys about domestic dogs' poop-eating habits completed by thousands of pet owners, the researchers found no link between eating poop and a dog's sex, house training, compulsive behavior, or the style of mothering they received as puppies. However, they did find one common link between the poop eaters. Most tended to eat only poop that was less than two days old. According to their data, 85 percent of poop-eaters only go for the fresh stuff.

That timeline is important because it tracks with the lifespan of parasites. And this led the researchers to the following hypothesis: that eating poop is a holdover behavior from domestic dogs' ancestors, who may have had a decent reason to tuck into their friends' poop.

Since their poop has a high chance of containing intestinal parasites, wolves poop far from their dens. But if a sick wolf doesn't quite make it out of the den in time, they might do their business too close to home. A healthier wolf might eat this poop, but the parasite eggs wouldn't have hatched within the first day or two of the feces being dropped. Thus, the healthy wolf would carry the risk of infection away from the den, depositing the eggs they had consumed away in their own, subsequent bowel movements at an appropriate distance before the eggs had the chance to hatch into larvae and transmit the parasite to the pack.

Domestic dogs may just be enacting this behavior instinctively—only for them, there isn't as much danger of them picking up a parasite at home. However, the theory isn't foolproof. The surveys also found that so-called "greedy eaters" were more likely to eat feces than dogs who aren't quite so intense about food. So yes, it could still be about a poop-loving palate.

But really, it's much more pleasant to think about the behavior as a parasite-protection measure than our best pals foraging for a delicious fecal snack. 

[h/t The Washington Post]

nextArticle.image_alt|e
iStock
arrow
science
The Prehistoric Bacteria That Helped Create Our Cells Billions of Years Ago
iStock
iStock

We owe the existence of our cells—the very building blocks of life—to a chance relationship between bacteria that occurred more than 2 billion years ago. Flash back to Bio 101, and you might remember that humans, plants, and animals have complex eukaryotic cells, with nucleus-bound DNA, instead of single-celled prokaryotic cells. These contain specialized organelles such as the mitochondria—the cell’s powerhouse—and the chloroplast, which converts sunlight into sugar in plants.

Mitochondria and chloroplasts both look and behave a lot like bacteria, and they also share similar genes. This isn’t a coincidence: Scientists believe these specialized cell subunits are descendants of free-living prehistoric bacteria that somehow merged together to form one. Over time, they became part of our basic biological units—and you can learn how by watching PBS Eons’s latest video below.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios