Why Meteorological and Astronomical Seasons Don’t Line Up

iStock
iStock

For many Americans, summer essentially starts after Memorial Day weekend. The school year's wrapping up, offices seem emptier, and jorts re-emerge from the depths of our closets. Yet the calendar says differently.

Technically, summer doesn’t start until after the summer solstice, usually around June 21, when most of us are already well into backyard barbecue season. But meteorologists define summer as the season running between June 1 and August 30. Why the disconnect?

There’s a difference between meteorological summer—shorts weather—and astronomical summer, which is based on where the Sun is positioned in relation to the Earth, as Weather Underground explains.

Over the course of the year, the tilt of the Earth means that one hemisphere is closer to the Sun than its counterpart for several months at a time, marking the summer season. When the Northern Hemisphere is closer, from late June to late September, the northern part of the world experiences summer, while the Southern Hemisphere—which is tilted farther away from the Sun—experiences winter. During summer months, the Sun takes a longer path across the sky, resulting in longer daylight hours. The equinoxes mark the days where the ratio of day-to-night stands at exactly 12 hours each, because the Sun is lined up with the equator.

Because the Earth doesn’t take exactly 365 days to travel around the Sun each year, the days that equinoxes and solstices fall on vary slightly year-to-year. Still, they typically take place around March 21 (spring equinox), June 21 (summer solstice), September 22 (autumnal equinox), and December 22 (winter solstice).

That variability makes it difficult to pin the seasons to calendar dates, so we have meteorological seasons. These are the times we normally think of as summer, fall, winter, and spring—the three-month chunks of time that correspond to the changes in the weather. Meteorological summer runs from June 1 to August 31, corresponding to how most people envision the season, running from about Memorial Day to about Labor Day. Fall goes from September 1 to November 30, winter from December 1 to February 28, and spring from March 1 to May 31.

The firm dates of meteorological seasons allow weather forecasters to better observe and predict weather patterns year-to-year, since they’re based on the annual temperature cycle, rather than the exact timing of the Earth’s orbit. Even if daylight hours aren’t yet at their peak in early June, temperatures are still more akin to summer than spring, so it makes sense to call it summer from a weather perspective. When it comes to compiling statistics on temperature and weather patterns for agricultural planning and business, working around the static calendar is a lot easier than trying to deal with the variability of the Sun’s position in the sky.

So yes, even though summer doesn’t technically start until June 21 at 12:24 a.m. Eastern Time, you and your jorts were onto something after all.

[h/t Weather Underground]

Why Does Humidity Make Us Feel Hotter?

Tomwang112/iStock via Getty Images
Tomwang112/iStock via Getty Images

With temperatures spiking around the country, we thought it might be a good time to answer some questions about the heat index—and why humidity makes us feel hotter.

Why does humidity make us feel hotter?

To answer that question, we need to talk about getting sweaty.

As you probably remember from your high school biology class, one of the ways our bodies cool themselves is by sweating. The sweat then evaporates from our skin, and it carries heat away from the body as it leaves.

Humidity throws a wrench in that system of evaporative cooling, though. As relative humidity increases, the evaporation of sweat from our skin slows down. Instead, the sweat just drips off of us, which leaves us with all of the stinkiness and none of the cooling effect. Thus, when the humidity spikes, our bodies effectively lose a key tool that could normally be used to cool us down.

What's relative about relative humidity?

We all know that humidity refers to the amount of water contained in the air. However, as the air’s temperature changes, so does the amount of water the air can hold. (Air can hold more water vapor as the temperature heats up.) Relative humidity compares the actual humidity to the maximum amount of water vapor the air can hold at any given temperature.

Whose idea was the heat index?

While the notion of humidity making days feel warmer is painfully apparent to anyone who has ever been outside on a soupy day, our current system owes a big debt to Robert G. Steadman, an academic textile researcher. In a 1979 research paper called, “An Assessment of Sultriness, Parts I and II,” Steadman laid out the basic factors that would affect how hot a person felt under a given set of conditions, and meteorologists soon used his work to derive a simplified formula for calculating heat index.

The formula is long and cumbersome, but luckily it can be transformed into easy-to-read charts. Today your local meteorologist just needs to know the air temperature and the relative humidity, and the chart will tell him or her the rest.

Is the heat index calculation the same for everyone?

Not quite, but it’s close. Steadman’s original research was founded on the idea of a “typical” person who was outdoors under a very precise set of conditions. Specifically, Steadman’s everyman was 5’7” tall, weighed 147 pounds, wore long pants and a short-sleeved shirt, and was walking at just over three miles per hour into a slight breeze in the shade. Any deviations from these conditions will affect how the heat/humidity combo feels to a certain person.

What difference does being in the shade make?

Quite a big one. All of the National Weather Service’s charts for calculating the heat index make the reasonable assumption that folks will look for shade when it’s oppressively hot and muggy out. Direct sunlight can add up to 15 degrees to the calculated heat index.

How does wind affect how dangerous the heat is?

Normally, when we think of wind on a hot day, we think of a nice, cooling breeze. That’s the normal state of affairs, but when the weather is really, really hot—think high-90s hot—a dry wind actually heats us up. When it’s that hot out, wind actually draws sweat away from our bodies before it can evaporate to help cool us down. Thanks to this effect, what might have been a cool breeze acts more like a convection oven.

When should I start worrying about high heat index readings?

The National Weather Service has a handy four-tiered system to tell you how dire the heat situation is. At the most severe level, when the heat index is over 130, that's classified as "Extreme Danger" and the risk of heat stroke is highly likely with continued exposure. Things get less scary as you move down the ladder, but even on "Danger" days, when the heat index ranges from 105 to 130, you probably don’t want to be outside. According to the service, that’s when prolonged exposure and/or physical activity make sunstroke, heat cramps, and heat exhaustion likely, while heat stroke is possible.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

This article has been updated for 2019.

Is the Heat Index Real?

MarianVejcik/iStock via Getty Images
MarianVejcik/iStock via Getty Images

Complaining about the humidity is a mainstay of small talk. “It’s not the heat that gets you, it’s the humidity” is a common refrain around the South, just as “it’s a dry heat” is a go-to line in the desert Southwest. The clichés aren’t wrong on this one—a hot and humid day can have a dramatic effect on both your comfort and your health. We can measure this very real impact on your body using the heat index. 

The heat index is the temperature it feels like to your body when you factor in both the actual air temperature and the amount of moisture in the air. If the heat index is 103°F, that means that the combination of heat and humidity has a similar physical impact on your body as it would if the actual air temperature were 103°F. Even though it’s tempting to think of the heat index as an exaggerated temperature that only exists to make the heat sound worse than it really is, scientists came up with the measurements after decades of medical and meteorological research devoted to studying the impact of heat and humidity on the human body. It’s the real deal.

The dew point is an important component of the heat index. The dew point is the temperature at which the air would reach 100 percent relative humidity, or become fully saturated with moisture like on a foggy morning. Since cooler air can’t hold as much moisture as warmer air, lower dew points reflect lower moisture levels and higher dew points indicate higher moisture levels. Dew points below 60°F are comfortable, while readings reaching 70°F and even 80°F range from muggy to downright oppressive.

Measuring humidity on a hot day is important because moisture is how your body naturally cools itself off. Your sweat cools the surface of your skin through a process known as evaporative cooling. If the air is packed with moisture, it takes longer for your sweat to evaporate than it would in more normal conditions, preventing you from cooling off efficiently. The inability to lower your body temperature when it’s hot can quickly lead to medical emergencies like heat exhaustion or heat stroke, which is why the heat index is such an important measurement to pay attention to during the summer months.

The heat index is generally considered “dangerous” once the value climbs above 105°F, and your risk of falling ill increases the higher the heat index climbs.

Dry climates can have the opposite effect on your body, with the distinct lack of moisture in the air making it feel cooler to your body than it really is. Summers get oppressively hot in places like Arizona and Iraq, but the heat doesn’t affect residents as severely because the air is extremely dry. Dew points in desert regions can hover at or below 32°F even when the air temperature is well above 100°F, which is about as dry as it can get in the natural world.  

In 2016, a city in Kuwait measured the all-time highest confirmed temperature ever recorded in the eastern hemisphere, where temperatures climbed to a sweltering 129°F during the day on July 21, 2016. The dew point there at the same time was nearly 100 degrees cooler, leading to a heat index of just 110°F, much lower than the actual air temperature. That’s not necessarily a good thing. Extreme heat combined with extreme aridity can make your sweat evaporate too efficiently, quickly dehydrating you and potentially leading to medical emergencies similar to those you would experience in a much more humid region of the world. 

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

This story has been updated for 2019.

SECTIONS

arrow
LIVE SMARTER